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Piano dei due incontri

1. Rassegna critica e introduzione all’inferenza probabilistica
• Quanto sono sensate e ben fondate le regolette per la

valutazione dei cosiddetti “errori di misura”?
• Per imparare dall’esperienza in modo quantitativo,

facendo uso della logica dell’incerto, dobbiamo
◦ rivedere il concetto di probabilità;
◦ imparare ad . . . imparare dall’esperienza.

2. Stima delle incertezze in misure dirette e indirette
• Sorgenti delle incertezze di misura (decalogo ISO).
• Applicazione dell’inferenza probabilistica alle misure

sperimentali (semplice caso di errori gaussiani):
◦ singola osservazione
◦ campione di osservazioni
◦ stima dei parametri di un andamento lineare

• Propagazione delle incertezze
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Scaletta del primo incontro

• Metodo scientifico: osservazioni e ipotesi
• Incertezza
• Cause←→Effetti

“Il problema essenziale del metodo sperimentale” (Poincaré).
• L’esempio guida: il problema delle sei scatole.

“La probabilità à riferita a casi reali o non ha alcun senso” (de Finetti).
• Fisichettume: una rassegna critica.
• Falsificazionismo e variazioni statistiche (’test’).
• Approccio probabilistico.
• Cosè la probabilità? Regole di base della probabilità.
• Aggiornamento della probabilità alla luce delle osservazioni

(formula di Bayes)⇒inferenza probabilistica (bayesiana)
• Conclusioni.
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From past to future

Task of the ‘physicist’ (scientist, decision maker):
• Describe/understand the physical world

⇒ inference of laws and their parameters
• Predict observations

⇒ forecasting
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From past to future

Process
• neither automatic
• nor purely contemplative
→ ‘scientific method’
→ planned experiments (‘actions’)⇒ decision.
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From past to future

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

⇒ Uncertainty:

1. Given the past observations, in general we are not sure
about the theory parameter (and/or the theory itself)

2. Even if we were sure about theory and parameters, there
could be internal (e.g. Q.M.) or external effects
(initial/boundary conditions, ‘errors’, etc) that make the
forecasting uncertain.
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From past to future

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

⇒ Decision
• What is be best action (’experiment’) to take in order ‘to be

confident’ that what we would like will occur?
(Decision issues always assume uncertainty about future
outcomes.)

• Before tackling problems of decision we need to learn to
reason about uncertainty, possibly in a quantitative way.
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From past to future

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Deep reason of uncertainty

Theory — ? −→ Future observations

Past observations — ? −→ Theory

Theory — ? −→ Future observations
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About predictions

Remember:

“Prediction is very difficult,
especially if it’s about the future” (Bohr)
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About predictions

Remember:

“Prediction is very difficult,
especially if it’s about the future” (Bohr)

But, anyway:

“It is far better to foresee even without
certainty than not to foresee at all”
(Poincaré)
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Deep source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→
Past observations — ? −→

Theory — ? −→ Future observations
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Deep source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→ Future observations

Past observations — ? −→ Theory

Theory — ? −→ Future observations
=⇒ Uncertainty about causal connections

CAUSE⇐⇒ EFFECT
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Causes→ effects

The same apparent cause might produce several,different
effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.
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G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p.



Causes→ effects

The same apparent cause might produce several,different
effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.

E2 ⇒ {C1, C2, C3}?
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The essential problem of the experimental method

“Now, these problems are classified as probability of
causes, and are most interesting of all their scientific
applications. I play at écarté with a gentleman whom I know
to be perfectly honest. What is the chance that he turns up
the king? It is 1/8. This is a problem of the probability of
effects.
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The essential problem of the experimental method

“Now, these problems are classified as probability of
causes, and are most interesting of all their scientific
applications. I play at écarté with a gentleman whom I know
to be perfectly honest. What is the chance that he turns up
the king? It is 1/8. This is a problem of the probability of
effects.

I play with a gentleman whom I do not know. He has dealt
ten times, and he has turned the king up six times. What is
the chance that he is a sharper? This is a problem in the
probability of causes. It may be said that it is the essential
problem of the experimental method.”

(H. Poincaré – Science and Hypothesis)
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Uncertainty

The human mind is used to live — and survive — in
conditions of uncertainty and has developed mental
categories to handle it.
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Uncertainty

The human mind is used to live — and survive — in
conditions of uncertainty and has developed mental
categories to handle it.

As a matter of fact, although we are in a constant state of
uncertainty about many events which might or might not
occur,
◦ we can be “more or less sure — or confident — on

something than on something else”;
◦ “we consider something more or less probable (or

likely)”;
◦ or “we believe something more or less than something

else”.
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Uncertainty

The human mind is used to live — and survive — in
conditions of uncertainty and has developed mental
categories to handle it.

As a matter of fact, although we are in a constant state of
uncertainty about many events which might or might not
occur,
◦ we can be “more or less sure — or confident — on

something than on something else”;
◦ “we consider something more or less probable (or

likely)”;
◦ or “we believe something more or less than something

else”.

We can use similar expressions, all referring to the intuitive
idea of probability.
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The six box problem

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
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The six box problem

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
We are in a state of uncertainty concerning several events, the
most important of which correspond to the following questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will we
observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

Our certainty: ∪5
j=0 Hj = Ω

∪2
i=1 Ei = Ω .
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The six box problem

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
We are in a state of uncertainty concerning several events, the
most important of which correspond to the following questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will we
observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

• What happens after we have extracted one ball and looked
its color?
◦ Intuitively we now how to roughly change our opinion.
◦ Can we do it quantitatively, in an objective way?
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The six box problem

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
We are in a state of uncertainty concerning several events, the
most important of which correspond to the following questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will we
observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

• What happens after we have extracted one ball and looked
its color?
◦ Intuitively we now how to roughly change our opinion.
◦ Can we do it quantitatively, in an objective way?

• And after a sequence of extractions?
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The toy inferential experiment

The aim of the experiment will be to guess the content of the box
without looking inside it, only extracting a ball, record its color
and reintroducing in the box
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The toy inferential experiment

The aim of the experiment will be to guess the content of the box
without looking inside it, only extracting a ball, record its color
and reintroducing in the box

This toy experiment is conceptually very close to what we do in
Physics
• try to guess what we cannot see (the electron mass, a

branching ratio, etc)

. . . from what we can see (somehow) with our senses.

The rule of the game is that we are not allowed to watch inside
the box! (As we cannot open and electron and read its
properties, like we read the MAC address of a PC interface)
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Doing Science in conditions of uncertainty

The constant status of uncertainty does not prevent us from
doing Science (in the sense of Natural Science and not just
Mathematics)
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Doing Science in conditions of uncertainty

The constant status of uncertainty does not prevent us from
doing Science (in the sense of Natural Science and not just
Mathematics)

Indeed

“It is scientific only to say what is more
likely and what is less likely” (Feynman)
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How to quantify all that?

G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p. 13



How to quantify all that?

• Falsificationist approach
[and statistical variations over the theme].

G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p. 13



How to quantify all that?

• Falsificationist approach
[and statistical variations over the theme].

• Probabilistic approach
[In the sense that probability theory is used throughly]
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How to quantify all that?

• Falsificationist approach
[and statistical variations over the theme].

• Probabilistic approach
[In the sense that probability theory is used throughly]

e . . .
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How to quantify all that?

• Falsificationist approach
[and statistical variations over the theme].

• Probabilistic approach
[In the sense that probability theory is used throughly]

e . . .

• . . . Fisichettume
[Le varie formulette di “calcolo e propagazione degli
errori”]

⇒ Segue su lucidi : vedi pp. 13-26 Ref. [2]
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Falsificationism

Usually associated to the name of Popper

and considered to be the key to scientific progress.
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Falsificationism

Usually associated to the name of Popper

and considered to be the key to scientific progress.

if Ci −→/ E, then Eobs −→/ Ci

⇒ Causes that cannot produce observed effects are ruled out
(‘falsified’).
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Falsificationism

Usually associated to the name of Popper

and considered to be the key to scientific progress.

if Ci −→/ E, then Eobs −→/ Ci

⇒ Causes that cannot produce observed effects are ruled out
(‘falsified’).

It seems OK, but it is naive for several aspects.
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Falsificationism

Usually associated to the name of Popper

and considered to be the key to scientific progress.

if Ci −→/ E, then Eobs −→/ Ci

⇒ Causes that cannot produce observed effects are ruled out
(‘falsified’).

It seems OK, but it is naive for several aspects.

Let start realizing that the method is analogous with method
of the proof by contradiction of classical, deductive logic.

G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p. 14



Falsificationism

Usually associated to the name of Popper

and considered to be the key to scientific progress.

if Ci −→/ E, then Eobs −→/ Ci

⇒ Causes that cannot produce observed effects are ruled out
(‘falsified’).

It seems OK, but it is naive for several aspects.

Let start realizing that the method is analogous with method
of the proof by contradiction of classical, deductive logic.
◦ Assume that a hypothesis is true
◦ Derive ‘all’ logical consequence
◦ If (at least) one of the consequences is known to be

false, then the hypothesis is declared false.
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Falsificationism? OK, but. . .

• What to do of all hypotheses that are not falsified? (Limbus?
Get stuck?)
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Falsificationism? OK, but. . .

• What to do of all hypotheses that are not falsified? (Limbus?
Get stuck?)

• What to do is nothing of what can be observed is
incompatible with the hypothesis (or with many
hypotheses)?

E.g. Hi being a Gaussian f(x |µi, σi)
⇒ Given any pair or parameters {µi, σi}, all values of x

between −∞ and +∞ are possible.
⇒ Having observed any value of x, none of Hi can be,

strictly speaking, falsified.

G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p. 15



Falsificationism and statistics

. . . then, statisticians have invented the “hypothesis tests”
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Falsificationism and statistics

. . . then, statisticians have invented the “hypothesis tests”

in which the impossible is replaced by the improbable!
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Falsificationism and statistics

. . . then, statisticians have invented the “hypothesis tests”

in which the impossible is replaced by the improbable!

But from the impossible to the improbable there is not just a
question of quantity, but a question of quality.

This mechanism, logically flawed, is particularly perverse,
because deeply rooted in most people, due to education, but is
not supported by logic.

⇒ Basically responsible of all fake claims of discoveries in the
past decades.

[I am particularly worried about claims concerning our
health, or the status of the planet, of which I have no control
of the experimental data.]
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In summary

A) if Ci −→/ E, and we observe E

⇒ Ci is impossible (‘false’)

G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p. 17



In summary

A) if Ci −→/ E, and we observe E

⇒ Ci is impossible (‘false’)

B) if Ci −−−−−−−−−→
small probability

E, and we observe E

⇒ Ci has small probability to be true
“most likely false”
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In summary

A) if Ci −→/ E, and we observe E OK
⇒ Ci is impossible (‘false’)

B) if Ci −−−−−−−−−→
small probability

E, and we observe E

⇒ Ci has small probability to be true
“most likely false”
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In summary

A) if Ci −→/ E, and we observe E OK
⇒ Ci is impossible (‘false’)

B) if Ci −−−−−−−−−→
small probability

E, and we observe E NO

⇒ Ci has small probability to be true
“most likely false”

G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p. 17



Example 1

Playing lotto

H: “I play honestly at lotto, betting on a rare combination”
E: “I win”

H −−−−−−−−−−−−−→
“practically impossible”

E
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Example 1

Playing lotto

H: “I play honestly at lotto, betting on a rare combination”
E: “I win”

H −−−−−−−−−−−−−→
“practically impossible”

E

“practically to exclude”
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Example 1

Playing lotto

H: “I play honestly at lotto, betting on a rare combination”
E: “I win”

H −−−−−−−−−−−−−→
“practically impossible”

E

“practically to exclude”

⇒ almost certainly I have cheated. . .
(or it is false that I won. . . )
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Example 2

An Italian citizen is selected at random to undergo an AIDS test.
Performance of clinical trial is not perfect, as customary.
Toy model:

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

H1=’HIV’ (Infected) E1 = Positive

H2=’HIV’ (Healthy) E2 = Negative
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Example 2

An Italian citizen is selected at random to undergo an AIDS test.
Performance of clinical trial is not perfect, as customary.
Toy model:

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

H1=’HIV’ (Infected) E1 = Positive

H2=’HIV’ (Healthy) E2 = Negative

Result: ⇒ Positive
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Example 2

An Italian citizen is selected at random to undergo an AIDS test.
Performance of clinical trial is not perfect, as customary.
Toy model:

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

? H1=’HIV’ (Infected) E1 = Positive

? H2=’HIV’ (Healthy) E2 = Negative

Result: ⇒ Positive

Infected or healthy?
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Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say
• ”It is practically impossible that the person is healthy,

since it was practically impossible that an healthy person
would result positive”?
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Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say
• ”It is practically impossible that the person is healthy,

since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
?
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Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say
• ”It is practically impossible that the person is healthy,

since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”?
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Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say
• ”It is practically impossible that the person is healthy,

since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”
• “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

?
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Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

• ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”

• “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

? NO
Instead, P (HIV |Pos, random Italian) ≈ 45%
(We will see in the sequel how to evaluate it correctly)
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Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

• ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”

• “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

? NO
Instead, P (HIV |Pos, random Italian) ≈ 45%
⇒ Serious mistake! (not just 99.8% instead of 98.3% or so)
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Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

• ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”

• “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

? NO
Instead, P (HIV |Pos, random Italian) ≈ 45%
⇒ Serious mistake! (not just 99.8% instead of 98.3% or so)

... which might result into very bad decisions!
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‘Standard’ statistical tests, p-values, etc

• This kind of logical mistake is quite common.
“Si sbaglia da professionisti” (P. Conte)
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‘Standard’ statistical tests, p-values, etc

• This kind of logical mistake is quite common.
“Si sbaglia da professionisti” (P. Conte)

• Yes, statisticians have invented p-values (something like
‘probability of the tail(s)’ – I cannot enter into details) to
overcome the problem that often the probability of any
observation is always very small and the null hypotheses
would always be rejected.
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‘Standard’ statistical tests, p-values, etc

• This kind of logical mistake is quite common.
“Si sbaglia da professionisti” (P. Conte)

• Yes, statisticians have invented p-values (something like
‘probability of the tail(s)’ – I cannot enter into details) to
overcome the problem that often the probability of any
observation is always very small and the null hypotheses
would always be rejected.
But
◦ as far as logic is concerned, the situation is worsened

(. . . although p-values ‘often, by chance work’).
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‘Standard’ statistical tests, p-values, etc

• This kind of logical mistake is quite common.
“Si sbaglia da professionisti” (P. Conte)

• Yes, statisticians have invented p-values (something like
‘probability of the tail(s)’ – I cannot enter into details) to
overcome the problem that often the probability of any
observation is always very small and the null hypotheses
would always be rejected.
But
◦ as far as logic is concerned, the situation is worsened

(. . . although p-values ‘often, by chance work’).
• Mistrust statistical tests, unless you know the details of what

it has been done.
→ You might take bad decisions!

G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p. 21



Conflict: natural thinking⇔ cultural superstructure

Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).
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Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).

• In this, still dominant approach (frequentism) it is forbidden
to speak about probability of hypotheses, probability of
causes, probability of values of physical quantities, etc.
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Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).

• In this, still dominant approach (frequentism) it is forbidden
to speak about probability of hypotheses, probability of
causes, probability of values of physical quantities, etc.

• The concept of probability of causes [“The essential
problem of the experimental method” (Poincaré)] has
been surrogated by the mechanism of hypothesis test
and ‘p-values’. (And of ‘confidence intervals’ in parametric
inference)
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Conflict: natural thinking⇔ cultural superstructure

Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).

• In this, still dominant approach (frequentism) it is forbidden
to speak about probability of hypotheses, probability of
causes, probability of values of physical quantities, etc.

• The concept of probability of causes [“The essential
problem of the experimental method” (Poincaré)] has
been surrogated by the mechanism of hypothesis test
and ‘p-values’. (And of ‘confidence intervals’ in parametric
inference)

⇒ BUT people think naturally in terms of probability of causes,
and use p-values as if they were probabilities of null
hypotheses.
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Conflict: natural thinking⇔ cultural superstructure

Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).

• In this, still dominant approach (frequentism) it is forbidden
to speak about probability of hypotheses, probability of
causes, probability of values of physical quantities, etc.

• The concept of probability of causes [“The essential
problem of the experimental method” (Poincaré)] has
been surrogated by the mechanism of hypothesis test
and ‘p-values’. (And of ‘confidence intervals’ in parametric
inference)

⇒ BUT people think naturally in terms of probability of causes,
and use p-values as if they were probabilities of null
hypotheses. ⇒ Terrible mistakes!

G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p. 22



Probabilistic reasoning

What to do?
⇒ Back to the past
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Probabilistic reasoning

What to do?
⇒ Back to the past
But benefitting of
• Theoretical progresses in probability theory
• Advance in computation (both symbolic and numeric)
→ many frequentistic ideas had their raison d’être in the

computational barrier (and many simplified – often
simplistic – methods were ingeniously worked out)
→ no longer an excuse!
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Probabilistic reasoning

What to do?
⇒ Back to the past
But benefitting of
• Theoretical progresses in probability theory
• Advance in computation (both symbolic and numeric)
→ many frequentistic ideas had their raison d’être in the

computational barrier (and many simplified – often
simplistic – methods were ingeniously worked out)
→ no longer an excuse!

⇒ Use consistently probability theory
◦ “It’s easy if you try”
◦ But first you have to recover the intuitive idea of

probability.
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Probability

What is probability?
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Standard textbook definitions

p =
# favorable cases

# possible equiprobable cases

p =
# times the event has occurred

# independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity

p =
# favorable cases

# possible equiprobable cases

p =
# times the event has occurred

# independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity

p =
# favorable cases

# possible equally possible cases

p =
# times the event has occurred

# independent trials under same conditions

Laplace: “lorsque rien ne porte à croire que l’un de ces cas doit
arriver plutot que les autres”

Pretending that replacing ‘equi-probable’ by ‘equi-possible’
is just cheating students (as I did in my first lecture on the
subject. . . ).
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity,
plus other problems

p =
# favorable cases

# possible equiprobable cases

p = limn→∞
# times the event has occurred

# independent trials under same condition

Future⇔ Past (believed so)

n→∞: → “usque tandem?”
→ “in the long run we are all dead”
→ It limits the range of applications
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Definitions→ evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

# possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.
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Definitions→ evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

# possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.

BUT they cannot define the concept of probability!
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Definitions→ evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

# possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.

In the probabilistic approach we are going to see
• Rule A will be recovered immediately (under the

assumption of equiprobability, when it applies).
• Rule B will result from a theorem (under well defined

assumptions).
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Probability

What is probability?
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What is probability?

It is what everybody knows what it is
before going at school
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What is probability?

It is what everybody knows what it is
before going at school
→ how much we are confident that

something is true
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Probability

What is probability?

It is what everybody knows what it is
before going at school
→ how much we are confident that

something is true
→ how much we believe something
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Probability

What is probability?

It is what everybody knows what it is
before going at school
→ how much we are confident that

something is true
→ how much we believe something
→ “A measure of the degree of belief

that an event will occur”

[Remark: ‘will’ does not imply future, but only uncertainty.]
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true1. . . ,
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true1. . . , the numerical
probability p of this event is to be a real number by the indication
of which we try in some cases to setup a quantitative measure
of the strength of our conjecture or anticipation, founded on the
said knowledge, that the event comes true”
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true1. . . , the numerical
probability p of this event is to be a real number by the indication
of which we try in some cases to setup a quantitative measure
of the strength of our conjecture or anticipation, founded on the
said knowledge, that the event comes true”
(E. Schrödinger, The foundation of the theory of probability - I,
Proc. R. Irish Acad. 51A (1947) 51)

1While in ordinary speech “to come true” usually refers to an event that
is envisaged before it has happened, we use it here in the general
sense, that the verbal description turns out to agree with actual facts.
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False, True and probable

Probability
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0 1

0
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1

?

Event E

logical point of view FALSE

cognitive point of view FALSE

psychological
(subjective)

point of view

if certain FALSE

if uncertain,
with
probability

UNCERTAIN

TRUE

TRUE

TRUE
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

“If we were not ignorant there would be no probability, there
could only be certainty. But our ignorance cannot be
absolute, for then there would be no longer any probability
at all. Thus the problems of probability may be classed
according to the greater or less depth of our ignorance.”
(Poincaré)
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

The state of information can be
different from subject to subject

⇒ intrinsic subjective nature.
• No negative meaning: only an acknowledgment that several

persons might have different information and, therefore,
necessarily different opinions.
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

The state of information can be
different from subject to subject

⇒ intrinsic subjective nature.
• No negative meaning: only an acknowledgment that several

persons might have different information and, therefore,
necessarily different opinions.

• “Since the knowledge may be different with different
persons or with the same person at different times, they
may anticipate the same event with more or less
confidence, and thus different numerical probabilities may
be attached to the same event” (Schrödinger)
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

Probability is always conditional
probability
‘P (E)’ −→ P (E | I) −→ P (E | I(t))
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

Probability is always conditional
probability
‘P (E)’ −→ P (E | I) −→ P (E | I(t))

• “Thus whenever we speak loosely of ‘the probability of an
event,’ it is always to be understood: probability with regard
to a certain given state of knowledge” (Schrödinger)
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

Probability is always conditional
probability
‘P (E)’ −→ P (E | I) −→ P (E | I(t))

• “Thus whenever we speak loosely of ‘the probability of an
event,’ it is always to be understood: probability with regard
to a certain given state of knowledge” (Schrödinger)

• Some examples:
◦ tossing a die;
◦ ’three box problems’;
◦ two envelops’ paradox.
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Unifying role of subjective probability

• Wide range of applicability
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%
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◦ P (next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

They all convey unambiguously the same confidence on
something.
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

They all convey unambiguously the same confidence on
something.

• You might agree or disagree, but at least You know what this
person has in his mind. (NOT TRUE with “C.L.’s”!)
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

They all convey unambiguously the same confidence on
something.

• You might agree or disagree, but at least You know what this
person has in his mind. (NOT TRUE with “C.L.’s”!)

• If a person has these beliefs and he/she has the chance to
win a rich prize bound to one of these events, he/she has no
rational reason to chose an event instead than the others.
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

• Probability not bound to a single evaluation rule.
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

• Probability not bound to a single evaluation rule.
• In particular, combinatorial and frequency based ‘definitions’

are easily recovered as evaluation rules
under well defined hypotheses.

• Keep separate concept from evaluation rule.
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From the concept of probability to the probability theory

Ok, it looks nice, . . . but “how do we deal with ‘numbers’?”
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Coherent bet (de Finetti, Ramsey - ’Dutch book
argument’)

It is well understood that bet odds can express confidence†
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Coherent bet → A bet acceptable in both directions:
◦ You state your confidence fixing the bet odds
◦ . . . but somebody else chooses the direction of the bet
◦ best way to honestly assess beliefs.
→ see later for details, examples, objections, etc
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Consistency arguments (Cox, + Good, Lucas)
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Consistency arguments (Cox, + Good, Lucas)
• Similar approach by Schrödinger (much less known)
• Supported by Jaynes and Maximum Entropy school
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’

→ analogy to measures (we need to measure ’befiefs’)

G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p. 32



From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’

→ analogy to measures (we need to measure ’befiefs’)

⇒ reference probabilities provided by simple cases in which
equiprobability applies (coins, dice, turning wheels,. . . ).

• Example: You are offered to options to receive a price: a) if
E happens, b) if a coin will show head. Etc. . . .
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’

→ Rational under everedays expressions like “there are 90
possibilities in 100” to state beliefs in situations in which the
real possibilities are indeed only 2 (e.g. dead or alive)

• Example: a question to a student that has to pass an exam:
a) normal test; b) pass it is a uniform random x will be ≤ 0.8.
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’
• Also based on coherence, but it avoids the ‘repulsion’ of

several person when they are asked to think directly in
terms of bet (it is proved that many persons have reluctance
to bet money).
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Basic rules of probability

They all lead to

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]

4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A) ,

where
• Ω stands for ‘tautology’ (a proposition that is certainly true
→ referring to an event that is certainly true) and ∅ = Ω.

• A∩B is true only when both A and B are true (logical AND)

(shorthands ‘A,B’ or AB often used→ logical product)
• A ∪B is true when at least one of the two propositions is

true (logical OR)
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Basic rules of probability

Remember that probability is always conditional probability!

1. 0 ≤ P (A | I) ≤ 1

2. P (Ω | I) = 1

3. P (A ∪B | I) = P (A | I) + P (B | I) [ if P (A ∩B | I) = ∅ ]

4. P (A ∩B | I) = P (A |B, I) · P (B | I) = P (B |A, I) · P (A | I)

I is the background condition (related to information I)

→ usually implicit (we only care on ‘re-conditioning’)
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Subjective 6= arbitrary

Crucial role of the coherent bet
• You claim that this coin has 70% to give head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e.
⇒ If OK with you, let’s start.
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Subjective 6= arbitrary

Crucial role of the coherent bet
• You claim that this coin has 70% to give head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e.
⇒ If OK with you, let’s start.

• You claim that this coin has 30% to give head?
⇒ Just reverse the bet

(Like sharing goods, e.g. a cake with a child)
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Subjective 6= arbitrary

Crucial role of the coherent bet
• You claim that this coin has 70% to give head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e.
⇒ If OK with you, let’s start.

• You claim that this coin has 30% to give head?
⇒ Just reverse the bet

(Like sharing goods, e.g. a cake with a child)

⇒ Take into account all available information in the most
‘objective way’
(Even that someone has a different opinion!)

⇒ It might seem paradoxically, but the ‘subjectivist’ is much
more ‘objective’ than those who blindly use so-called
objective methods.
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Summary on probabilistic approach

• Probability means how much we believe something
• Probability values obey the following basic rules

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]

4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A) ,

• All the rest by logic

→ And, please, be coherent!
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Inference

Inference

⇒ How do we learn from data
in a probabilistic framework?
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From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects
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From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Our conditional view of probabilistic causation

P (Ei |Cj)
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From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Our conditional view of probabilistic causation

P (Ei |Cj)

Our conditional view of probabilistic inference

P (Cj |Ei)
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From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Our conditional view of probabilistic causation

P (Ei |Cj)

Our conditional view of probabilistic inference

P (Cj |Ei)

The fourth basic rule of probability:

P (Cj , Ei) = P (Ei |Cj)P (Cj) = P (Cj |Ei)P (Ei)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

Got ‘after’ Calculated ‘before’

(where ‘before’ and ‘after’ refer to the knowledge that Ei is true.)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

”post illa observationes” “ante illa observationes”

(Gauss)
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Application to the six box problem

H0 H1 H2 H3 H4 H5

Remind:
• E1 = White
• E2 = Black
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Our prior belief about Hj
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei under a well defined hypothesis Hj

It corresponds to the ‘response of the apparatus in
measurements.
→ likelihood (traditional, rather confusing name!)
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
Easy in this case, because of the symmetry of the problem.
But already after the first extraction of a ball our opinion
about the box content will change, and symmetry will break.
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

But it easy to prove that P (Ei | I) is related to the other
ingredients, usually easier to ‘measure’ or to assess
somehow, though vaguely
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

But it easy to prove that P (Ei | I) is related to the other
ingredients, usually easier to ‘measure’ or to assess
somehow, though vaguely

‘decomposition law’: P (Ei | I) =
∑

j P (Ei |Hj , I) · P (Hj | I)

(→ Easy to check that it gives P (Ei | I) = 1/2 in our case).
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)·P (Hj | I)
P

j
P (Ei |Hj , I)·P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) =
∑

j P (Ei |Hj , I) · P (Hj | I)

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

We are ready!
−→ R program
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First extraction

After first extraction (and reintroduction) of the ball:
• P (Hj) changes

• P (Ej) for next extraction changes

Note: The box is exactly in the same status as before
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First extraction

After first extraction (and reintroduction) of the ball:
• P (Hj) changes

• P (Ej) for next extraction changes

Note: The box is exactly in the same status as before

Where is probability?
→ Certainly not in the box!
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p. 43



Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)∑
j P (Ei |Hj) · P (Hj)
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)∑
j P (Ei |Hj) · P (Hj)

P (Hj |Ei) ∝ P (Ei |Hj) · P (Hj)
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)∑
j P (Ei |Hj) · P (Hj)

P (Hj |Ei) ∝ P (Ei |Hj) · P (Hj)

Different ways to write the

Bayes’ Theorem
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p. 44



Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E
(1), E(2)) ∝ P (E(2) |Hj , E

(1)) · P (Hj |E
(1))
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E
(1), E(2)) ∝ P (E(2) |Hj , E

(1)) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E
(1), E(2)) ∝ P (E(2) |Hj , E

(1)) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p. 44



Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E
(1), E(2)) ∝ P (E(2) |Hj , E

(1)) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E
(1), E(2)) ∝ P (E(2) |Hj , E

(1)) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)

Bayesian inference
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E
(1), E(2)) ∝ P (E(2) |Hj , E

(1)) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)

Learning from data using probability theory
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Solution of the AIDS test problem

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

We miss something: P◦(HIV) and P◦(HIV): Yes! We need some
input from our best knowledge of the problem. Let us take
P◦(HIV) = 1/600 and P◦(HIV) ≈ 1 (the result is rather stable
against reasonable variations of the inputs!)

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
·
P◦(HIV)

P◦(HIV)

=
≈ 1

0.002
×

0.1/60

≈ 1
= 500×

1

600
=

1

1.2
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Odd ratios and Bayes factor

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
·
P◦(HIV)

P (HIV)

=
≈ 1

0.002
×

0.1/60

≈ 1
= 500×

1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .
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Odd ratios and Bayes factor

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
·
P◦(HIV)

P (HIV)

=
≈ 1

0.002
×

0.1/60

≈ 1
= 500×

1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .

There are some advantages in expressing Bayes theorem in
terms of odd ratios:
• There is no need to consider all possible hypotheses (how

can we be sure?)
We just make a comparison of any couple of hypotheses!
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Odd ratios and Bayes factor

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
·
P◦(HIV)

P (HIV)

=
≈ 1

0.002
×

0.1/60

≈ 1
= 500×

1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .

There are some advantages in expressing Bayes theorem in
terms of odd ratios:
• There is no need to consider all possible hypotheses (how

can we be sure?)
We just make a comparison of any couple of hypotheses!

• Bayes factor is usually much more inter-subjective, and it is
often considered an ‘objective’ way to report how much the
data favor each hypothesis.
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Conclusioni

• Attenti alle formulette che girano su libri e appunti:
⇒ vanno passate al vaglio della ragione

• La logica del certo inadatta alla trattazione delle incertezze:
risultati assurdi o troppo conservativi

• Lo strumento concettuale corretto per trattare l’incertezza è
quello di probabilità

• . . . a patto di usare il concetto intuitivo e non artefatti
matematici

• ⇒ probabilità soggettiva.
Niente di negativo nel termine, solo accettare il fatto che la
probabilità dipende dallo stato di conoscenza e che questo
varia dalle persone e dal tempo.

• Lo strumento per riaggiornare la probabilità alla luce delle
nuove osservazioni è il Teorema di Bayes
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Prossimamente

• La prossima volta vedremo come estendere l’inferenza
bayesiana alle incertezze di misura,

• . . . ma, concettualmente, abbiamo già detto tutto.

Documentazione:

⇒ Sito docente (→Google→Teaching)
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