Probabilità e incertezze di misura

Giulio D'Agostini

Dipartimento di Fisica Università di Roma La Sapienza

Piano dei due incontri

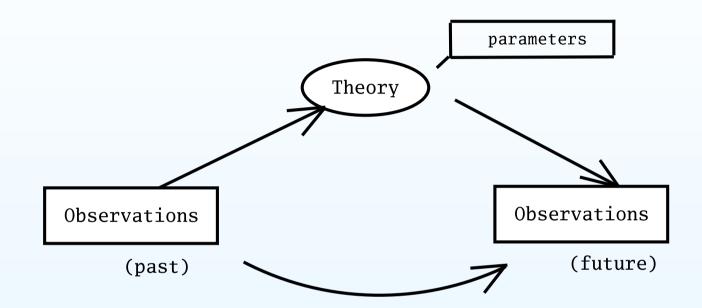
- 1. Rassegna critica e introduzione all'inferenza probabilistica
 - Quanto sono sensate e ben fondate le regolette per la valutazione dei cosiddetti "errori di misura"?
 - Per imparare dall'esperienza in modo quantitativo, facendo uso della logica dell'incerto, dobbiamo
 - rivedere il concetto di probabilità;
 - imparare ad ... imparare dall'esperienza.
- 2. Stima delle incertezze in misure dirette e indirette
 - Sorgenti delle incertezze di misura (*decalogo ISO*).
 - Applicazione dell'inferenza probabilistica alle misure sperimentali (semplice caso di errori gaussiani):
 - singola osservazione
 - campione di osservazioni
 - ° stima dei parametri di un andamento lineare
 - Propagazione delle incertezze

Scaletta del primo incontro

- Metodo scientifico: osservazioni e ipotesi
- Incertezza
- Cause ↔ Effetti

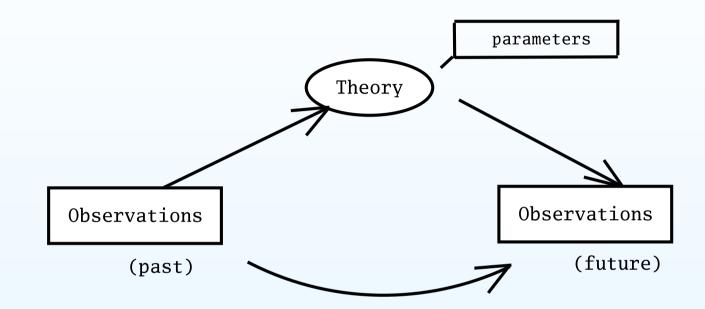
"Il problema essenziale del metodo sperimentale" (Poincaré).

- L'esempio guida: il problema delle sei scatole. "La probabilità à riferita a casi reali o non ha alcun senso" (de Finetti).
- Fisichettume: una rassegna critica.
- Falsificazionismo e variazioni statistiche ('test').
- Approccio probabilistico.
- Cosè la probabilità? Regole di base della probabilità.
- Aggiornamento della probabilità alla luce delle osservazioni (formula di Bayes) ⇒inferenza probabilistica (bayesiana)
- Conclusioni.



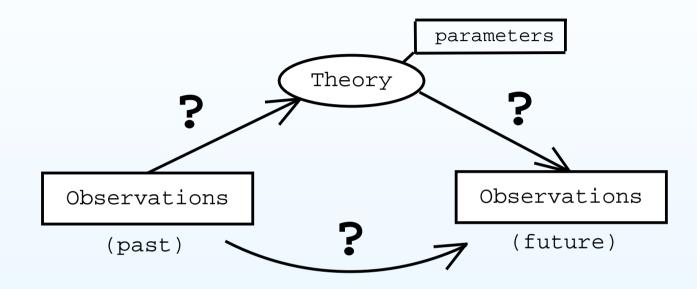
Task of the 'physicist' (scientist, decision maker):

- Describe/understand the physical world
 - \Rightarrow inference of laws and their parameters
- Predict observations
 - $\Rightarrow \textit{forecasting}$



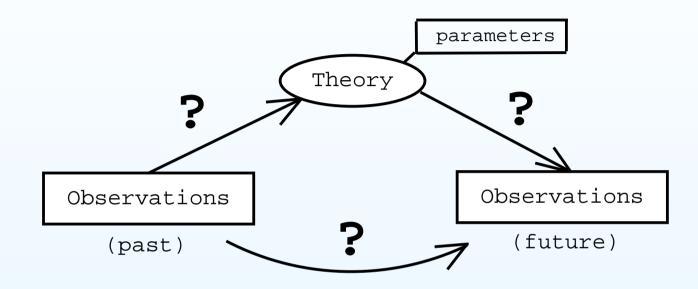
Process

- neither automatic
- nor purely contemplative
 - \rightarrow 'scientific method'
 - \rightarrow planned experiments ('actions') \Rightarrow decision.



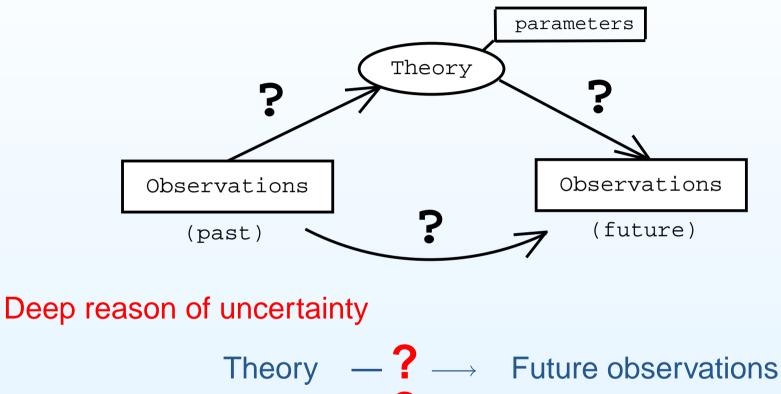
\Rightarrow Uncertainty:

- 1. Given the past observations, in general we are not sure about the theory parameter (and/or the theory itself)
- 2. Even if we were sure about theory and parameters, there could be internal (e.g. Q.M.) or external effects (initial/boundary conditions, 'errors', etc) that make the forecasting uncertain.



$\Rightarrow \text{Decision}$

- What is be best action ('experiment') to take in order 'to be confident' that what we would like will occur? (Decision issues always assume uncertainty about future outcomes.)
- Before tackling problems of decision we need to learn to reason about uncertainty, possibly in a quantitative way.



Past observations $-? \longrightarrow$ Theory

- Theory —
- $-? \longrightarrow$ Future observations

Remember:

"Prediction is very difficult, especially if it's about the future" (Bohr)

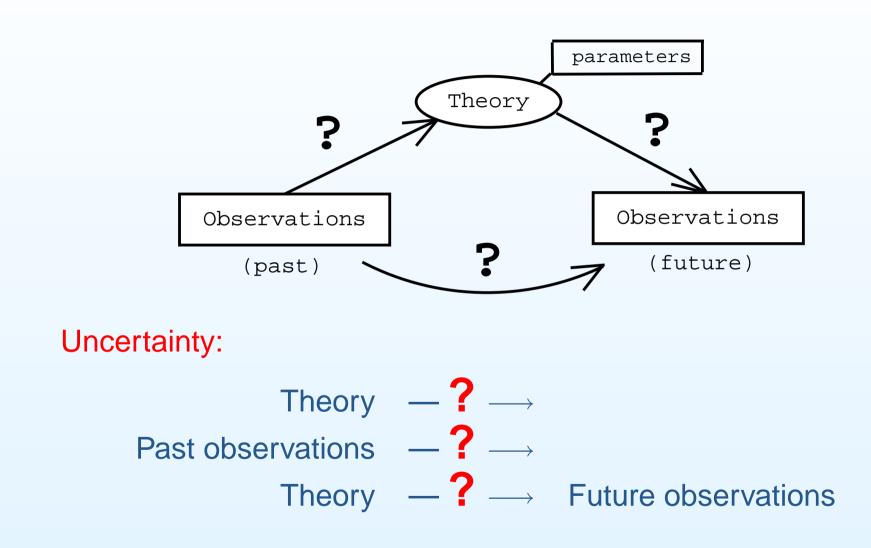
Remember:

"Prediction is very difficult, especially if it's about the future" (Bohr)

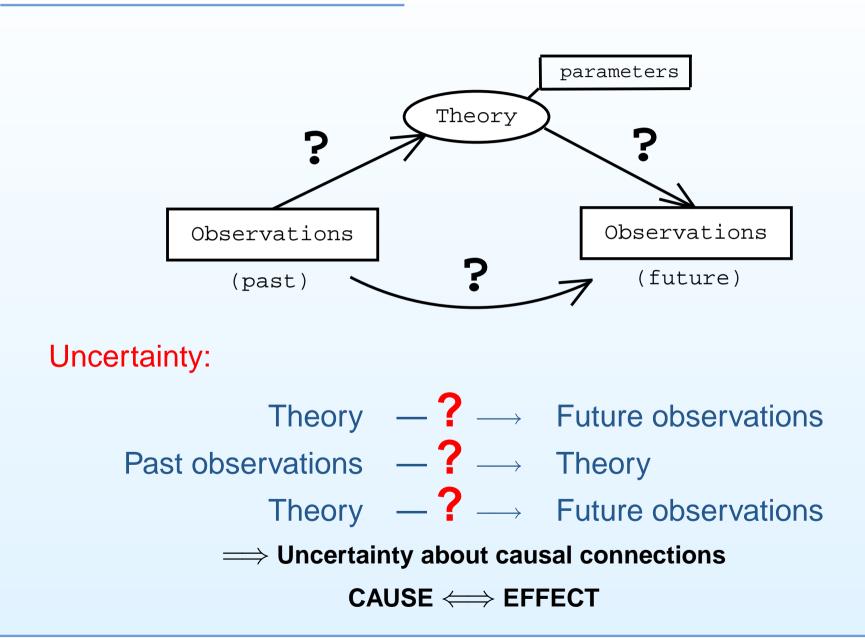
But, anyway:

"It is far better to foresee even without certainty than not to foresee at all" (Poincaré)

Deep source of uncertainty

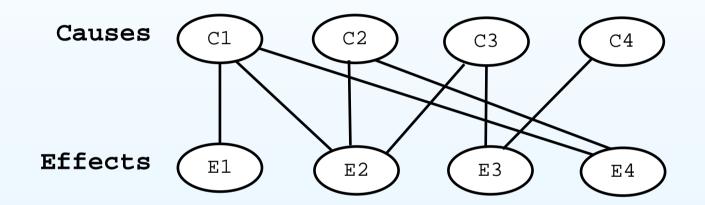


Deep source of uncertainty



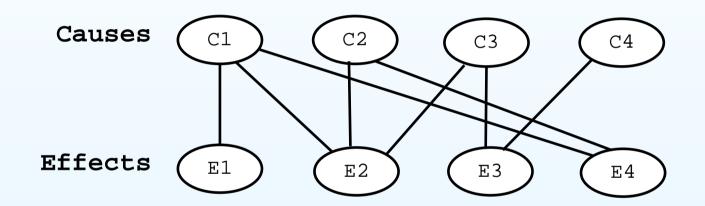
Causes \rightarrow effects

The same *apparent* cause might produce several, different effects



Given an observed effect, we are not sure about the exact cause that has produced it. Causes \rightarrow effects

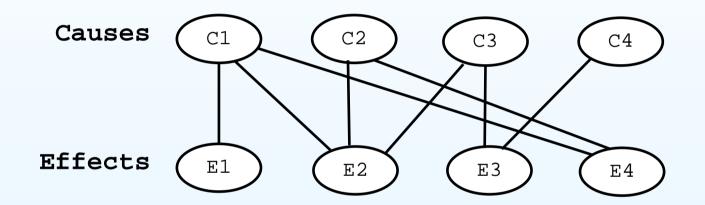
The same *apparent* cause might produce several, different effects



Given an observed effect, we are not sure about the exact cause that has produced it.

Causes \rightarrow effects

The same *apparent* cause might produce several, different effects



Given an observed effect, we are not sure about the exact cause that has produced it.

 $\mathbf{E_2} \Rightarrow \{C_1, C_2, C_3\}?$

The essential problem of the experimental method

"Now, these problems are classified as *probability of causes*, and are most interesting of all their scientific applications. I play at *écarté* with a gentleman whom I know to be perfectly honest. What is the chance that he turns up the king? It is 1/8. This is a problem of the *probability of effects*.

The essential problem of the experimental method

"Now, these problems are classified as *probability of causes*, and are most interesting of all their scientific applications. I play at *écarté* with a gentleman whom I know to be perfectly honest. What is the chance that he turns up the king? It is 1/8. This is a problem of the *probability of effects*.

I play with a gentleman whom I do not know. He has dealt ten times, and he has turned the king up six times. What is the chance that he is a sharper? This is a problem in the probability of causes. It may be said that it is the essential problem of the experimental method."

(H. Poincaré – Science and Hypothesis)

Uncertainty

The human mind is used to live — and survive — in conditions of uncertainty and has developed mental categories to handle it.

Uncertainty

The human mind is used to live — and survive — in conditions of uncertainty and has developed mental categories to handle it.

As a matter of fact, although we are in a constant state of uncertainty about many events which might or might not occur,

- we can be "more or less sure or confident on something than on something else";
- "we consider something more or less probable (or likely)";
- or "we believe something more or less than something else".

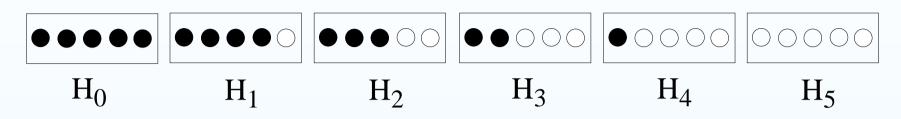
Uncertainty

The human mind is used to live — and survive — in conditions of uncertainty and has developed mental categories to handle it.

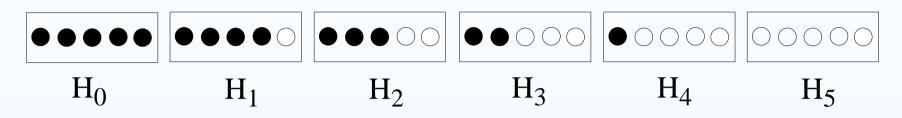
As a matter of fact, although we are in a constant state of uncertainty about many events which might or might not occur,

- we can be "more or less sure or confident on something than on something else";
- "we consider something more or less probable (or likely)";
- or "we believe something more or less than something else".

We can use similar expressions, all referring to the intuitive idea of probability.



Let us take randomly one of the boxes.



Let us take randomly one of the boxes.

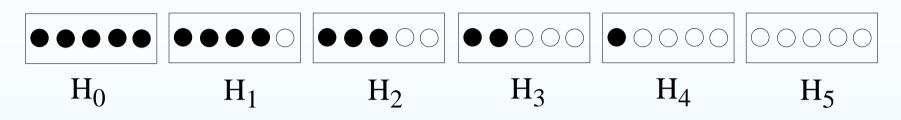
We are in a state of uncertainty concerning several *events*, the most important of which correspond to the following questions:

(a) Which box have we chosen, H_0, H_1, \ldots, H_5 ?

(b) If we extract randomly a ball from the chosen box, will we observe a white $(E_W \equiv E_1)$ or black $(E_B \equiv E_2)$ ball?

Our certainty:
$$\bigcup_{j=0}^{5} H_j = \Omega$$

 $\bigcup_{i=1}^{2} E_i = \Omega$

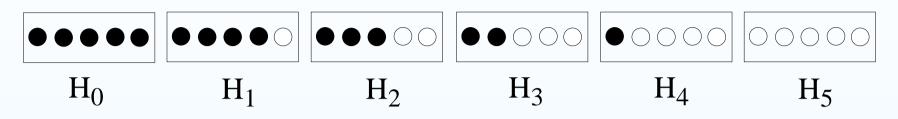


Let us take randomly one of the boxes.

We are in a state of uncertainty concerning several *events*, the most important of which correspond to the following questions:

(a) Which box have we chosen, H_0, H_1, \ldots, H_5 ?

- (b) If we extract randomly a ball from the chosen box, will we observe a white ($E_W \equiv E_1$) or black ($E_B \equiv E_2$) ball?
 - What happens after we have extracted one ball and looked its color?
 - Intuitively we now how to roughly change our opinion.
 - Can we do it quantitatively, in an objective way?



Let us take randomly one of the boxes.

We are in a state of uncertainty concerning several *events*, the most important of which correspond to the following questions:

(a) Which box have we chosen, H_0, H_1, \ldots, H_5 ?

- (b) If we extract randomly a ball from the chosen box, will we observe a white $(E_W \equiv E_1)$ or black $(E_B \equiv E_2)$ ball?
 - What happens after we have extracted one ball and looked its color?
 - Intuitively we now how to roughly change our opinion.
 - Can we do it quantitatively, in an objective way?
 - And after a sequence of extractions?

The toy inferential experiment

The aim of the experiment will be to guess the content of the box without looking inside it, only extracting a ball, record its color and reintroducing in the box The toy inferential experiment

The aim of the experiment will be to guess the content of the box without looking inside it, only extracting a ball, record its color and reintroducing in the box

This toy experiment is conceptually very close to what we do in Physics

 try to guess what we cannot see (the electron mass, a branching ratio, etc)

... from what we can see (somehow) with our senses.

The rule of the game is that we are not allowed to watch inside the box! (As we cannot open and electron and read its properties, like we read the MAC address of a PC interface) Doing Science in conditions of uncertainty

The constant status of uncertainty does not prevent us from doing Science (in the sense of Natural Science and not just Mathematics)

Doing Science in conditions of uncertainty

The constant status of uncertainty does not prevent us from doing Science (in the sense of Natural Science and not just Mathematics)

Indeed

"It is scientific only to say what is more likely and what is less likely" (Feynman)

Falsificationist approach

[and statistical variations over the theme].

Falsificationist approach

[and statistical variations over the theme].

Probabilistic approach

[In the sense that probability theory is used throughly]

Falsificationist approach

[and statistical variations over the theme].

Probabilistic approach

[In the sense that probability theory is used throughly]

е...

Falsificationist approach

[and statistical variations over the theme].

Probabilistic approach

[In the sense that probability theory is used throughly] **e** ...

• ... Fisichettume

[Le varie formulette di "calcolo e propagazione degli errori"]

⇒ Segue su lucidi: vedi pp. 13-26 Ref. [2]

Falsificationism

Usually associated to the name of Popper and considered to be the *key to scientific progress*.

Falsificationism

Usually associated to the name of Popper and considered to be the *key to scientific progress*.

if $C_i \not\longrightarrow E$, then $E_{\text{obs}} \not\longrightarrow C_i$

⇒ Causes that cannot produce observed effects are ruled out ('falsified').

Falsificationism

Usually associated to the name of Popper and considered to be the *key to scientific progress*.

if
$$C_i \longrightarrow E$$
, then $E_{obs} \longrightarrow C_i$

⇒ Causes that cannot produce observed effects are ruled out ('falsified').

It seems OK, but it is naive for several aspects.

Falsificationism

Usually associated to the name of Popper

and considered to be the key to scientific progress.

if $C_i \not\longrightarrow E$, then $E_{\text{obs}} \not\longrightarrow C_i$

⇒ Causes that cannot produce observed effects are ruled out ('falsified').

It seems OK, but it is naive for several aspects.

Let start realizing that the method is analogous with method of the proof by contradiction of classical, deductive logic. Falsificationism

Usually associated to the name of Popper

and considered to be the key to scientific progress.

if $C_i \not\longrightarrow E$, then $E_{\text{obs}} \not\longrightarrow C_i$

⇒ Causes that cannot produce observed effects are ruled out ('falsified').

It seems OK, but it is naive for several aspects.

Let start realizing that the method is analogous with method of the proof by contradiction of classical, deductive logic.

- Assume that a hypothesis is true
- Derive 'all' logical consequence
- If (at least) one of the consequences is known to be false, then the hypothesis is declared false.

Falsificationism? OK, but...

 What to do of all hypotheses that are not falsified? (Limbus? Get stuck?)

Falsificationism? OK, but...

- What to do of all hypotheses that are not falsified? (Limbus? Get stuck?)
- What to do is nothing of what can be observed is incompatible with the hypothesis (or with many hypotheses)?
 - E.g. H_i being a Gaussian $f(x \mid \mu_i, \sigma_i)$
 - ⇒ Given any pair or parameters { μ_i, σ_i }, <u>all values</u> of *x* between $-\infty$ and $+\infty$ are possible.
 - ⇒ Having observed any value of x, <u>none</u> of H_i can be, strictly speaking, <u>falsified</u>.

Falsificationism and statistics

... then, statisticians have invented the "hypothesis tests"

Falsificationism and statistics

... then, statisticians have invented the "hypothesis tests" in which the impossible is replaced by the improbable!

Falsificationism and statistics

... then, statisticians have invented the "hypothesis tests"

in which the impossible is replaced by the improbable!

But from the impossible to the improbable there is not just a question of quantity, but a question of quality.

This mechanism, logically flawed, is particularly perverse, because deeply rooted in most people, due to education, but is not supported by logic.

 \Rightarrow Basically responsible of all fake claims of discoveries in the past decades.

[I am particularly worried about claims concerning our health, or the status of the planet, of which I have no control of the experimental data.]

A) if $C_i \not\rightarrow E$, and we observe E $\Rightarrow C_i$ is impossible ('false')

A) if $C_i \not\rightarrow E$, and we observe E $\Rightarrow C_i$ is impossible ('false')

B) if
$$C_i \xrightarrow[\text{small probability}]{} E$$
, and we observe E

 $\Rightarrow C_i$ has small probability to be true "most likely false"

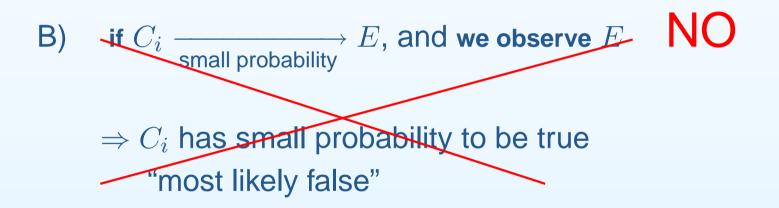
A) if $C_i \not\rightarrow E$, and we observe E $\Rightarrow C_i$ is impossible ('false')

OK

B) if
$$C_i \xrightarrow{} \text{small probability} E$$
, and we observe E

 $\Rightarrow C_i$ has small probability to be true "most likely false"

A) if $C_i \not\rightarrow E$, and we observe E $\Rightarrow C_i$ is impossible ('false')



OK

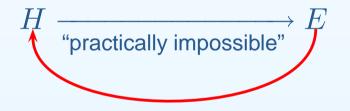
Playing lotto

H: "I play honestly at lotto, betting on a rare combination"*E*: "I win"

 $H \xrightarrow{\text{"practically impossible"}} E$

Playing lotto

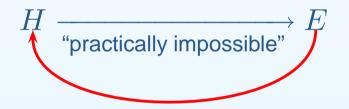
H: "I play honestly at lotto, betting on a rare combination"*E*: "I win"



"practically to exclude"

Playing lotto

H: "I play honestly at lotto, betting on a rare combination"*E*: "I win"



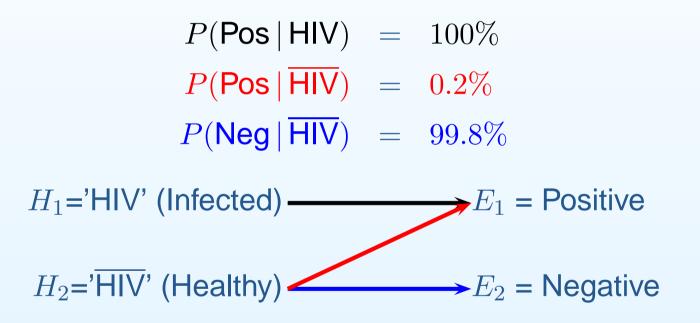
"practically to exclude"

 \Rightarrow almost certainly I have cheated... (or it is false that I won...)

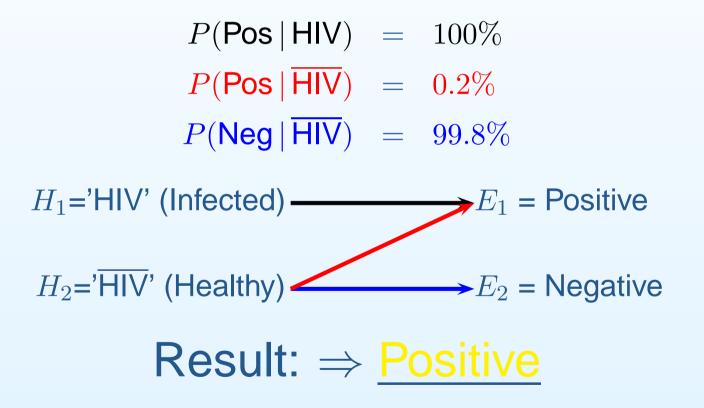
An Italian citizen is selected at random to undergo an AIDS test. Performance of clinical trial is not perfect, as customary. *Toy model*:

 $P(\mathsf{Pos} | \mathsf{HIV}) = 100\%$ $P(\mathsf{Pos} | \overline{\mathsf{HIV}}) = 0.2\%$ $P(\mathsf{Neg} | \overline{\mathsf{HIV}}) = 99.8\%$ $H_1 = \mathsf{'HIV'} \text{ (Infected)} \qquad E_1 = \mathsf{Positive}$ $H_2 = \mathsf{'HIV'} \text{ (Healthy)} \qquad E_2 = \mathsf{Negative}$

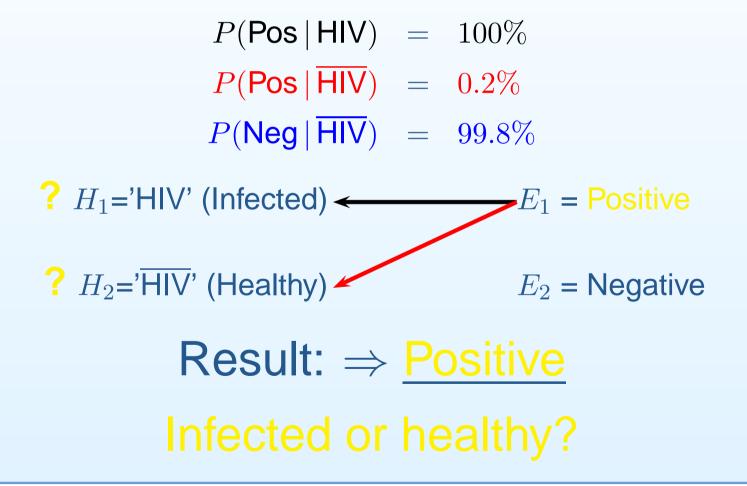
An Italian citizen is selected at random to undergo an AIDS test. Performance of clinical trial is not perfect, as customary. *Toy model*:



An Italian citizen is selected at random to undergo an AIDS test. Performance of clinical trial is not perfect, as customary. *Toy model*:



An Italian citizen is selected at random to undergo an AIDS test. Performance of clinical trial is not perfect, as customary. *Toy model*:



Being $P(Pos | \overline{HIV}) = 0.2\%$ and having observed 'Positive', can we say

• "It is practically impossible that the person is healthy, since it was practically impossible that an healthy person would result positive"?

Being $P(Pos | \overline{HIV}) = 0.2\%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an healthy person would result positive"
- "There is only 0.2% probability that the person has no HIV"
 ?

Being $P(Pos | \overline{HIV}) = 0.2\%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an healthy person would result positive"
- "There is only 0.2% probability that the person has no HIV"
- "We are 99.8% confident that the person is infected"?

Being $P(Pos | \overline{HIV}) = 0.2\%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an healthy person would result positive"
- "There is only 0.2% probability that the person has no HIV"
- "We are 99.8% confident that the person is infected"
- "The hypothesis H_1 =Healthy is ruled out with 99.8% C.L."

G. D'Agostini, Probabilità e incertezze di misura - Parte 1 - p.

Being $P(Pos | \overline{HIV}) = 0.2\%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an healthy person would result positive"
- "There is only 0.2% probability that the person has no HIV"
- "We are 99.8% confident that the person is infected"
- "The hypothesis H_1 =Healthy is ruled out with 99.8% C.L."

Instead, $P(\text{HIV} | \text{Pos}, \text{ random Italian}) \approx 45\%$ (We will see in the sequel how to evaluate it correctly)

Being $P(Pos | \overline{HIV}) = 0.2\%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an healthy person would result positive"
- "There is only 0.2% probability that the person has no HIV"
- "We are 99.8% confident that the person is infected"
- "The hypothesis H_1 =Healthy is ruled out with 99.8% C.L."

NO

Instead, $P(\text{HIV} | \text{Pos}, \text{ random Italian}) \approx 45\%$

 \Rightarrow Serious mistake! (not just 99.8% instead of 98.3% or so)

Being $P(\mbox{Pos}\,|\,\overline{\rm HIV})=0.2\%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an healthy person would result positive"
- "There is only 0.2% probability that the person has no HIV"
- "We are 99.8% confident that the person is infected"
- "The hypothesis H_1 =Healthy is ruled out with 99.8% C.L."

NO

Instead, $P(\text{HIV} | \text{Pos}, \text{ random Italian}) \approx 45\%$

- \Rightarrow Serious mistake! (not just 99.8% instead of 98.3% or so)
 - ... which might result into very bad decisions!

• This kind of logical mistake is quite common. "Si sbaglia da professionisti" (P. Conte)

- This kind of logical mistake is quite common. "Si sbaglia da professionisti" (P. Conte)
- Yes, statisticians have invented p-values (something like 'probability of the tail(s)' – I cannot enter into details) to overcome the problem that often the probability of any observation is always very small and the null hypotheses would always be rejected.

- This kind of logical mistake is quite common. "Si sbaglia da professionisti" (P. Conte)
- Yes, statisticians have invented p-values (something like 'probability of the tail(s)' – I cannot enter into details) to overcome the problem that often the probability of any observation is always very small and the null hypotheses would always be rejected. But
 - as far as logic is concerned, the situation is worsened (...although p-values 'often, by chance work').

- This kind of logical mistake is quite common. "Si sbaglia da professionisti" (P. Conte)
- Yes, statisticians have invented p-values (something like 'probability of the tail(s)' – I cannot enter into details) to overcome the problem that often the probability of any observation is always very small and the null hypotheses would always be rejected. But
 - as far as logic is concerned, the situation is worsened (...although p-values 'often, by chance work').
- Mistrust statistical tests, unless you know the details of what it has been done.
 - \rightarrow You might take <u>bad decisions</u>!

Why? 'Who' is responsible?

• Since beginning of '900 it is dominant an unnatural approach to probability, in contrast to that of the founding fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, ...).

- Since beginning of '900 it is dominant an unnatural approach to probability, in contrast to that of the founding fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, ...).
- In this, still dominant approach (frequentism) it is forbidden to speak about probability of hypotheses, probability of causes, probability of values of physical quantities, etc.

- Since beginning of '900 it is dominant an unnatural approach to probability, in contrast to that of the founding fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, ...).
- In this, still dominant approach (frequentism) it is forbidden to speak about probability of hypotheses, probability of causes, probability of values of physical quantities, etc.
- The concept of probability of causes ["The essential problem of the experimental method" (Poincaré)] has been surrogated by the mechanism of hypothesis test and 'p-values'. (And of 'confidence intervals' in parametric inference)

- Since beginning of '900 it is dominant an unnatural approach to probability, in contrast to that of the founding fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, ...).
- In this, still dominant approach (frequentism) it is forbidden to speak about probability of hypotheses, probability of causes, probability of values of physical quantities, etc.
- The concept of probability of causes ["The essential problem of the experimental method" (Poincaré)] has been surrogated by the mechanism of hypothesis test and 'p-values'. (And of 'confidence intervals' in parametric inference)
- ⇒ BUT people think naturally in terms of probability of causes, and use p-values as if they were probabilities of null hypotheses.

- Since beginning of '900 it is dominant an unnatural approach to probability, in contrast to that of the founding fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, ...).
- In this, still dominant approach (frequentism) it is forbidden to speak about probability of hypotheses, probability of causes, probability of values of physical quantities, etc.
- The concept of probability of causes ["The essential problem of the experimental method" (Poincaré)] has been surrogated by the mechanism of hypothesis test and 'p-values'. (And of 'confidence intervals' in parametric inference)
- ⇒ BUT people think naturally in terms of probability of causes, and use p-values as if they were probabilities of null hypotheses. ⇒ Terrible mistakes!

Probabilistic reasoning

What to do? \Rightarrow Back to the past

Probabilistic reasoning

What to do?

\Rightarrow Back to the past

But benefitting of

- Theoretical progresses in probability theory
- Advance in computation (both symbolic and numeric)
 - → many frequentistic ideas had their *raison d'être* in the computational barrier (and many simplified often simplistic methods were ingeniously worked out)
 → no longer an excuse!

Probabilistic reasoning

What to do?

\Rightarrow Back to the past

But benefitting of

- Theoretical progresses in probability theory
- Advance in computation (both symbolic and numeric)
 - → many frequentistic ideas had their raison d'être in the computational barrier (and many simplified often simplistic methods were ingeniously worked out)
 → no longer an excuse!
- \Rightarrow Use consistently probability theory

Probabilistic reasoning

What to do?

\Rightarrow Back to the past

But benefitting of

- Theoretical progresses in probability theory
- Advance in computation (both symbolic and numeric)
 - → many frequentistic ideas had their *raison d'être* in the computational barrier (and many simplified often simplistic methods were ingeniously worked out)
 → no longer an excuse!
- \Rightarrow Use consistently probability theory
 - "It's easy if you try"
 - But first you have to recover the intuitive idea of probability.

What is probability?

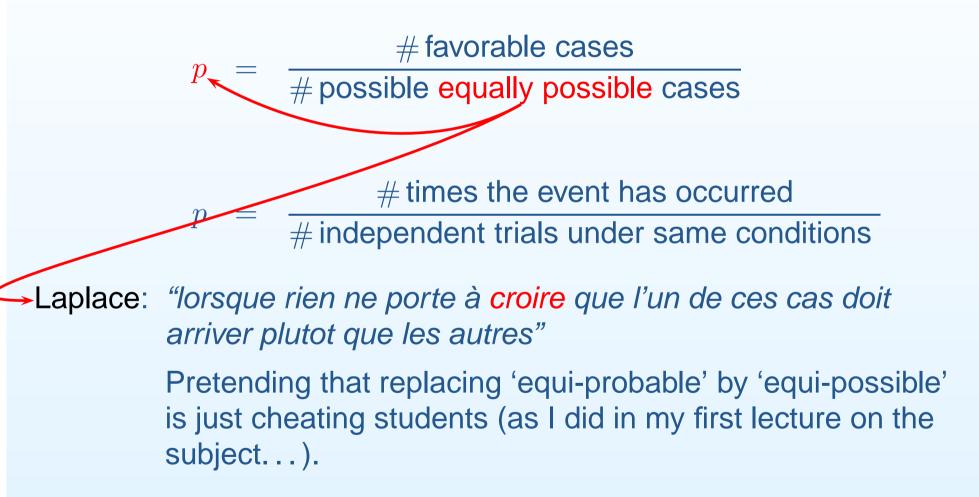
 $p = \frac{\# \text{favorable cases}}{\# \text{possible equiprobable cases}}$

 $p = \frac{\# \text{ times the event has occurred}}{\# \text{ independent trials under same conditions}}$

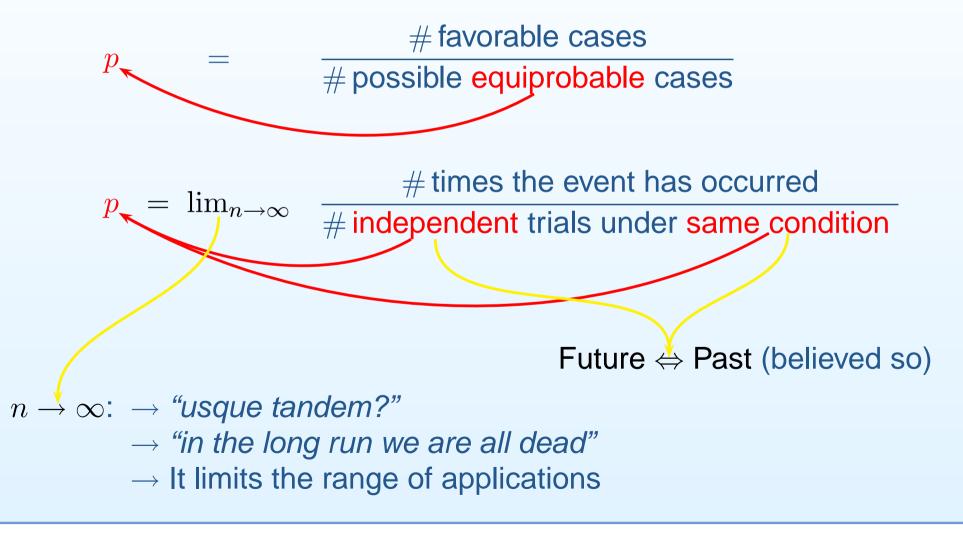
It is easy to check that 'scientific' definitions suffer of circularity

 $p = \frac{\# \text{ times the event has occurred}}{\# \text{ independent trials under same conditions}}$

It is easy to check that 'scientific' definitions suffer of circularity



It is easy to check that 'scientific' definitions suffer of circularity, plus other problems



Definitions \rightarrow evaluation rules

Very useful evaluation rules

A) $p = \frac{\# \text{favorable cases}}{\# \text{possible equiprobable cases}}$

B) $p = \frac{\# \text{ times the event has occurred}}{\# \text{ independent trials under same condition}}$

If the implicit beliefs are well suited for each case of application.

Definitions \rightarrow evaluation rules

Very useful evaluation rules

A) $p = \frac{\# \text{favorable cases}}{\# \text{possible equiprobable cases}}$

B) $p = \frac{\# \text{ times the event has occurred}}{\# \text{ independent trials under same condition}}$

If the implicit beliefs are well suited for each case of application.

BUT they cannot define the concept of probability!

Definitions \rightarrow evaluation rules

Very useful evaluation rules

A) $p = \frac{\# \text{favorable cases}}{\# \text{possible equiprobable cases}}$

B) $p = \frac{\# \text{ times the event has occurred}}{\# \text{ independent trials under same condition}}$

If the implicit beliefs are well suited for each case of application.

In the probabilistic approach we are going to see

- Rule *A* will be recovered immediately (under the assumption of equiprobability, when it applies).
- Rule *B* will result from a theorem (under well defined assumptions).

What is probability?

What is probability?

It is what everybody knows what it is before going at school

What is probability?

It is what everybody knows what it is before going at school

→ how much we are confident that something is true

What is probability?

It is what everybody knows what it is before going at school

- → how much we are confident that something is true
- \rightarrow how much we believe something

What is probability?

It is what everybody knows what it is before going at school

- → how much we are confident that something is true
- \rightarrow how much we believe something
- → "A measure of the degree of belief that an event will occur"

[Remark: 'will' does not imply future, but only uncertainty.]

Or perhaps you prefer this way...

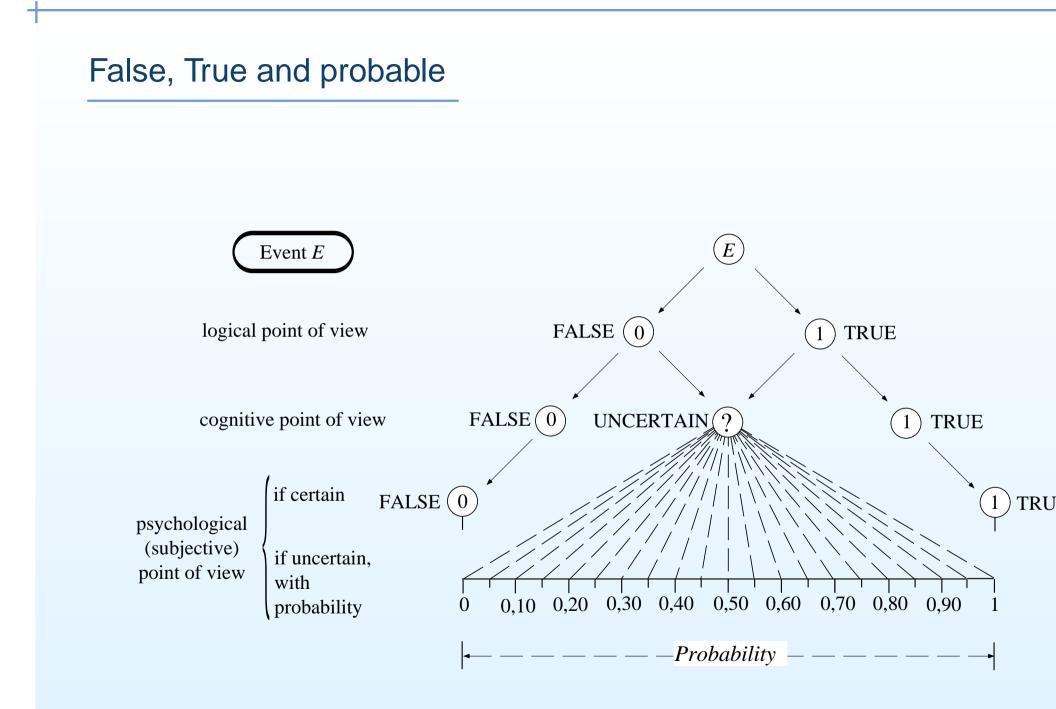
"Given the state of our knowledge about everything that could possible have any bearing on the coming true¹...,

Or perhaps you prefer this way...

"Given the state of our knowledge about everything that could possible have any bearing on the coming true¹...,

"Given the state of our knowledge about everything that could possible have any bearing on the coming true¹..., the numerical probability p of this event is to be a real number by the indication of which we try in some cases to setup a quantitative measure of the strength of our conjecture or anticipation, founded on the said knowledge, that the event comes true" "Given the state of our knowledge about everything that could possible have any bearing on the coming true¹..., the numerical probability p of this event is to be a real number by the indication of which we try in some cases to setup a quantitative measure of the strength of our conjecture or anticipation, founded on the said knowledge, that the event comes true" (E. Schrödinger, *The foundation of the theory of probability - I*, Proc. R. Irish Acad. 51A (1947) 51)

¹While in ordinary speech "to come true" usually refers to an event that is envisaged before it has happened, we use it here in the general sense, that the verbal description turns out to agree with actual facts.



Probability is related to uncertainty and not (only) to the results of repeated experiments

Probability is related to uncertainty and not (only) to the results of repeated experiments

"If we were not ignorant there would be no probability, there could only be certainty. But our ignorance cannot be absolute, for then there would be no longer any probability at all. Thus the problems of probability may be classed according to the greater or less depth of our ignorance." (Poincaré)

Probability is related to uncertainty and not (only) to the results of repeated experiments

The state of information can be different from subject to subject

- \Rightarrow intrinsic subjective nature.
 - No negative meaning: only an acknowledgment that several persons might have different information and, therefore, necessarily different opinions.

Probability is related to uncertainty and not (only) to the results of repeated experiments

The state of information can be different from subject to subject

- \Rightarrow intrinsic subjective nature.
 - No negative meaning: only an acknowledgment that several persons might have different information and, therefore, necessarily different opinions.
 - "Since the knowledge may be different with different persons or with the same person at different times, they may anticipate the same event with more or less confidence, and thus different numerical probabilities may be attached to the same event" (Schrödinger)

Probability is related to uncertainty and not (only) to the results of repeated experiments

Probability is always conditional probability

 $P(E)' \longrightarrow P(E \mid I) \longrightarrow P(E \mid I(t))$

Probability is related to uncertainty and not (only) to the results of repeated experiments

Probability is always conditional probability

 $P(E)' \longrightarrow P(E \mid I) \longrightarrow P(E \mid I(t))$

• "Thus whenever we speak loosely of 'the probability of an event,' it is always to be understood: probability with regard to a certain given state of knowledge" (Schrödinger)

Probability is related to uncertainty and not (only) to the results of repeated experiments

Probability is always conditional probability

 $P(E)' \longrightarrow P(E \mid I) \longrightarrow P(E \mid I(t))$

- "Thus whenever we speak loosely of 'the probability of an event,' it is always to be understood: probability with regard to a certain given state of knowledge" (Schrödinger)
- Some examples:
 - tossing a die;
 - 'three box problems';
 - two envelops' paradox.

• Wide range of applicability

- Wide range of applicability
- Probability statements all have the same meaning no matter to what they refer and how the number has been evaluated.
 - P(next Saturday) = 68%
 - P(Inter will win Italian champion league) = 68%
 - $\circ P(\text{free neutron decays before 17 s}) = 68\%$
 - P(White ball from a box with 68W+32B) = 68%

- Wide range of applicability
- Probability statements all have the same meaning no matter to what they refer and how the number has been evaluated.
 - P(next Saturday) = 68%
 - $\circ P($ Inter will win Italian champion league) = 68%
 - $\circ P(\text{free neutron decays before 17 s}) = 68\%$
 - P(White ball from a box with 68W+32B) = 68%

They all convey unambiguously the <u>same confidence</u> on something.

- Wide range of applicability
- Probability statements all have the same meaning no matter to what they refer and how the number has been evaluated.
 - P(next Saturday) = 68%
 - $\circ P($ Inter will win Italian champion league) = 68%
 - $\circ P(\text{free neutron decays before 17 s}) = 68\%$
 - P(White ball from a box with 68W+32B) = 68%

They all convey unambiguously the <u>same confidence</u> on something.

 You might agree or disagree, but at least You know what this person has in his mind. (<u>NOT TRUE with "C.L.'s"!</u>)

- Wide range of applicability
- Probability statements all have the same meaning no matter to what they refer and how the number has been evaluated.
 - P(next Saturday) = 68%
 - P(Inter will win Italian champion league) = 68%
 - $\circ P$ (free neutron decays before 17 s) = 68%
 - P(White ball from a box with 68W+32B) = 68%

They all convey unambiguously the <u>same confidence</u> on something.

- You might agree or disagree, but at least You know what this person has in his mind. (<u>NOT TRUE with "C.L.'s"!</u>)
- If a person has these beliefs and he/she has the chance to win a rich prize bound to one of these events, he/she has no rational reason to chose an event instead than the others.

- Wide range of applicability
- Probability statements all have the same meaning no matter to what they refer and how the number has been evaluated.
 - P(next Saturday) = 68%
 - P(Inter will win Italian champion league) = 68%
 - $\circ P$ (free neutron decays before 17 s) = 68%
 - $\circ P(\text{White ball from a box with 68W+32B}) = 68\%$
- Probability not bound to a single evaluation rule.

- Wide range of applicability
- Probability statements all have the same meaning no matter to what they refer and how the number has been evaluated.
 - P(next Saturday) = 68%
 - P(Inter will win Italian champion league) = 68%
 - $\circ P$ (free neutron decays before 17 s) = 68%
 - $\circ P(\text{White ball from a box with 68W+32B}) = 68\%$
- Probability not bound to a single evaluation rule.
- In particular, combinatorial and frequency based 'definitions' are easily recovered as evaluation rules under well defined hypotheses.
- Keep separate concept from evaluation rule.

From the concept of probability to the probability theory

Ok, it looks nice, ... but "how do we deal with 'numbers'?"

From the concept of probability to the probability theory

- Formal structure: we need a mathematical structure in order to 'propagate' probability values to other, logically connected events:
 - basic rules
 - logic (mathematics)

- Formal structure: we need a mathematical structure in order to 'propagate' probability values to other, logically connected events:
 - basic rules
 - logic (mathematics)
- Assess probability: The formal structure is an empty box, in which we have to insert some numbers.
 - Is there a very general rule?

- Formal structure: we need a mathematical structure in order to 'propagate' probability values to other, logically connected events:
 - →basic rules
 - logic (mathematics)
- Assess probability: The formal structure is an empty box, in which we have to insert some numbers.
 - Is there a very general rule?

Coherent bet (de Finetti, Ramsey - 'Dutch book argument')

It is well understood that bet odds can express confidence^{\dagger}

- Formal structure: we need a mathematical structure in order to 'propagate' probability values to other, logically connected events:
 - basic rules
 - logic (mathematics)
- Assess probability: The formal structure is an empty box, in which we have to insert some numbers.
 - Is there a very general rule?
 - **Coherent bet** \rightarrow A bet acceptable in both directions:
 - You state your confidence fixing the bet odds
 - $^{\circ}$... but somebody else chooses the direction of the bet
 - best way to honestly assess beliefs.
 - \rightarrow see later for details, examples, objections, etc

- Formal structure: we need a mathematical structure in order to 'propagate' probability values to other, logically connected events:
 - →basic rules
 - logic (mathematics)
- Assess probability: The formal structure is an empty box, in which we have to insert some numbers.
 - Is there a very general rule?

Consistency arguments (Cox, + Good, Lucas)

- Formal structure: we need a mathematical structure in order to 'propagate' probability values to other, logically connected events:
 - basic rules
 - logic (mathematics)
- Assess probability: The formal structure is an empty box, in which we have to insert some numbers.
 - Is there a very general rule?

Consistency arguments (Cox, + Good, Lucas)

- Similar approach by Schrödinger (much less known)
- Supported by Jaynes and Maximum Entropy school

- Formal structure: we need a mathematical structure in order to 'propagate' probability values to other, logically connected events:
 - →basic rules
 - logic (mathematics)
- Assess probability: The formal structure is an empty box, in which we have to insert some numbers.
 - Is there a very general rule?
- Consistency arguments (Cox, + Good, Lucas)
- Similar approach by Schrödinger (much less known)
- Supported by Jaynes and Maximum Entropy school

- Formal structure: we need a mathematical structure in order to 'propagate' probability values to other, logically connected events:
 - basic rules
 - logic (mathematics)
- Assess probability: The formal structure is an empty box, in which we have to insert some numbers.
 - Is there a very general rule?

Lindley's 'calibration' against 'standards'

 \rightarrow analogy to measures (we need to measure 'befiefs')

- Formal structure: we need a mathematical structure in order to 'propagate' probability values to other, logically connected events:
 - →basic rules
 - logic (mathematics)
- Assess probability: The formal structure is an empty box, in which we have to insert some numbers.
 - Is there a very general rule?

Lindley's 'calibration' against 'standards'

- \rightarrow analogy to measures (we need to measure 'befiefs')
- reference probabilities provided by simple cases in which
 equiprobability applies (coins, dice, turning wheels,...).
- Example: You are offered to options to receive a price: a) if *E* happens, b) if a coin will show head. Etc....

- Formal structure: we need a mathematical structure in order to 'propagate' probability values to other, logically connected events:
 - basic rules
 - logic (mathematics)
- Assess probability: The formal structure is an empty box, in which we have to insert some numbers.
 - Is there a very general rule?

Lindley's 'calibration' against 'standards'

- → Rational under everedays expressions like "there are 90 possibilities in 100" to state beliefs in situations in which the real possibilities are indeed only 2 (e.g. dead or alive)
 - Example: a question to a student that has to pass an exam: a) normal test; b) pass it is a uniform random x will be ≤ 0.8 .

- Formal structure: we need a mathematical structure in order to 'propagate' probability values to other, logically connected events:
 - basic rules
 - logic (mathematics)
- Assess probability: The formal structure is an empty box, in which we have to insert some numbers.
 - Is there a very general rule?

Lindley's 'calibration' against 'standards'

 Also based on coherence, but it avoids the 'repulsion' of several person when they are asked to think directly in terms of bet (it is proved that many persons have reluctance to bet money). Basic rules of probability

They all lead to

- $1. \qquad 0 \le P(A) \le 1$
- 2. $P(\Omega) = 1$
- 3. $P(A \cup B) = P(A) + P(B)$ [if $P(A \cap B) = \emptyset$]

4.
$$P(A \cap B) = P(A | B) \cdot P(B) = P(B | A) \cdot P(A)$$
,

where

- Ω stands for 'tautology' (a proposition that is certainly true \rightarrow referring to an event that is certainly true) and $\emptyset = \overline{\Omega}$.
- A ∩ B is true only when both A and B are true (logical AND) (shorthands 'A, B' or A B often used → logical product)
- A ∪ B is true when at least one of the two propositions is true (logical OR)

Basic rules of probability

Remember that probability is always conditional probability!

$$1. \qquad 0 \le P(A \mid \mathbf{I}) \le 1$$

2.
$$P(\Omega \mid \mathbf{I}) = 1$$

3.
$$P(A \cup B \mid I) = P(A \mid I) + P(B \mid I) \quad [\text{ if } P(A \cap B \mid I) = \emptyset]$$

4.
$$P(A \cap B \mid I) = P(A \mid B, I) \cdot P(B \mid I) = P(B \mid A, I) \cdot P(A \mid I)$$

I is the background condition (related to information *I*) \rightarrow usually implicit (we only care on 're-conditioning')

Subjective \neq arbitrary

Crucial role of the coherent bet

 You claim that <u>this</u> coin has 70% to give head? No problem with me: you place 70€ on head, I 30€ on tail and who wins take 100€.

 \Rightarrow If OK with you, let's start.

Subjective \neq arbitrary

Crucial role of the coherent bet

- You claim that <u>this</u> coin has 70% to give head? No problem with me: you place 70€ on head, I 30€ on tail and who wins take 100€.
 ⇒ If OK with you, let's start.
- You claim that <u>this</u> coin has 30% to give head?
 ⇒ Just reverse the bet

(Like sharing goods, e.g. a cake with a child)

Subjective \neq arbitrary

Crucial role of the coherent bet

- You claim that <u>this</u> coin has 70% to give head? No problem with me: you place 70€ on head, I 30€ on tail and who wins take 100€.
 ⇒ If OK with you, let's start.
- You claim that <u>this</u> coin has 30% to give head?
 ⇒ Just reverse the bet

(Like sharing goods, e.g. a cake with a child)

- Take into account all available information *in the most 'objective way'* (Even that someone has a different opinion!)
- ⇒ It might seem paradoxically, but the 'subjectivist' is much more 'objective' than those who blindly use so-called objective methods.

Summary on probabilistic approach

- Probability means how much we believe something
- Probability values obey the following basic rules

$$1. \qquad 0 \le P(A) \le 1$$

2.
$$P(\Omega) = 1$$

3.
$$P(A \cup B) = P(A) + P(B)$$
 [if $P(A \cap B) = \emptyset$]

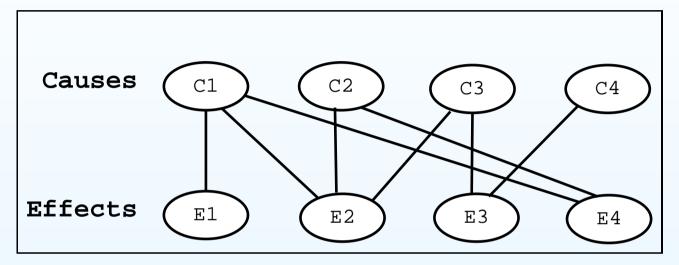
4. $P(A \cap B) = P(A | B) \cdot P(B) = P(B | A) \cdot P(A)$,

- All the rest by logic
- \rightarrow And, please, be coherent!

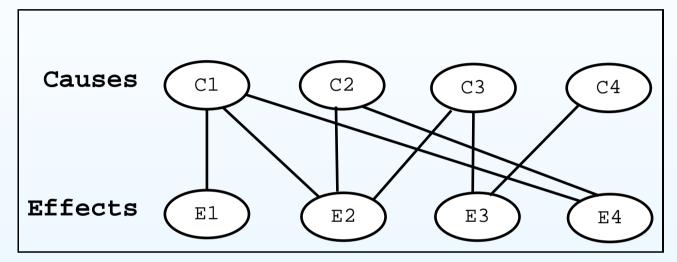
Inference

\Rightarrow How do we learn from data in a probabilistic framework?

Our original problem:



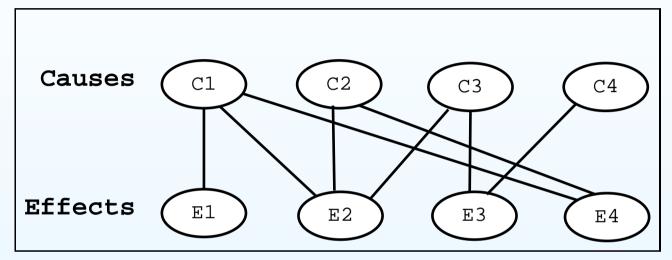
Our original problem:



Our conditional view of probabilistic causation

$$P(E_i \mid C_j)$$

Our original problem:



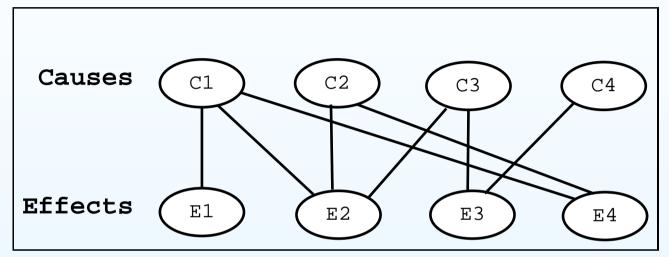
Our conditional view of probabilistic causation

$$P(E_i | C_j)$$

Our conditional view of probabilistic inference

$$P(C_j \mid E_i)$$

Our original problem:



Our conditional view of probabilistic causation

$$P(E_i | C_j)$$

Our conditional view of probabilistic inference

 $P(C_j \mid E_i)$

The fourth basic rule of probability:

 $P(C_j, E_i) = P(E_i | C_j) P(C_j) = P(C_j | E_i) P(E_i)$

Let us take basic rule 4, written in terms of hypotheses H_j and effects E_i , and rewrite it this way:

$$\frac{P(H_j \mid E_i)}{P(H_j)} = \frac{P(E_i \mid H_j)}{P(E_i)}$$

"The condition on E_i changes in percentage the probability of H_j as the probability of E_i is changed in percentage by the condition H_j ."

Let us take basic rule 4, written in terms of hypotheses H_j and effects E_i , and rewrite it this way:

$$\frac{P(H_j \mid E_i)}{P(H_j)} = \frac{P(E_i \mid H_j)}{P(E_i)}$$

"The condition on E_i changes in percentage the probability of H_j as the probability of E_i is changed in percentage by the condition H_j ."

It follows

$$P(H_j \mid E_i) = \frac{P(E_i \mid H_j)}{P(E_i)} P(H_j)$$

Let us take basic rule 4, written in terms of hypotheses H_j and effects E_i , and rewrite it this way:

$$\frac{P(H_j \mid E_i)}{P(H_j)} = \frac{P(E_i \mid H_j)}{P(E_i)}$$

"The condition on E_i changes in percentage the probability of H_j as the probability of E_i is changed in percentage by the condition H_j ."

It follows

$$P(H_j \mid E_i) = \frac{P(E_i \mid H_j)}{P(E_i)} P(H_j)$$

Got 'after'

Calculated 'before'

(where 'before' and 'after' refer to the knowledge that E_i is true.)

Let us take basic rule 4, written in terms of hypotheses H_j and effects E_i , and rewrite it this way:

$$\frac{P(H_j \mid E_i)}{P(H_j)} = \frac{P(E_i \mid H_j)}{P(E_i)}$$

"The condition on E_i changes in percentage the probability of H_j as the probability of E_i is changed in percentage by the condition H_j ."

It follows

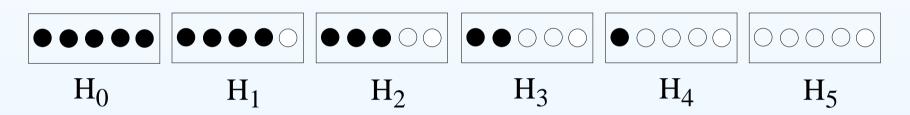
$$P(H_j \mid E_i) = \frac{P(E_i \mid H_j)}{P(E_i)} P(H_j)$$

"post illa observationes"

"ante illa observationes"

(Gauss)

Application to the six box problem



Remind:

- $E_1 = White$
- $E_2 = \mathsf{Black}$

$$P(H_j | E_i, I) = \frac{P(E_i | H_j, I)}{P(E_i | I)} P(H_j | I)$$

$$P(H_j | E_i, I) = \frac{P(E_i | H_j, I)}{P(E_i | I)} P(H_j | I)$$

•
$$P(H_j | I) = 1/6$$

$$P(H_j | E_i, I) = \frac{P(E_i | H_j, I)}{P(E_i | I)} P(H_j | I)$$

•
$$P(H_j | I) = 1/6$$

•
$$P(E_i | I) = 1/2$$

$$P(H_j | E_i, I) = \frac{P(E_i | H_j, I)}{P(E_i | I)} P(H_j | I)$$

- $P(H_j | I) = 1/6$
- $P(E_i | I) = 1/2$
- $P(E_i \mid H_j, I)$:

$$P(E_1 | H_j, I) = j/5$$

$$P(E_2 | H_j, I) = (5-j)/5$$

Our tool:

$$P(H_j | E_i, I) = \frac{P(E_i | H_j, I)}{P(E_i | I)} P(H_j | I)$$

•
$$P(H_j | I) = 1/6$$

• $P(E_i | I) = 1/2$
• $P(E_i | H_j, I)$:
 $P(E_1 | H_j, I) = j/5$
 $P(E_2 | H_j, I) = (5-j)/5$

 \sim Our prior belief about H_j

Our tool:

$$P(H_j | E_i, I) = \frac{P(E_i | H_j, I)}{P(E_i | I)} P(H_j | I)$$

•
$$P(H_j \mid I) = 1/6$$

•
$$P(E_i | I) = 1/2$$

 $P(E_i | H_j, I) :$

$$P(E_1 | H_j, I) = j/5$$

$$P(E_2 | H_j, I) = (5-j)/5$$

Probability of E_i under a well defined hypothesis H_j It corresponds to the 'response of the apparatus in measurements.

 \rightarrow likelihood (traditional, rather confusing name!)

Our tool:

$$P(H_j | E_i, I) = \frac{P(E_i | H_j, I)}{P(E_i | I)} P(H_j | I)$$

•
$$P(H_j | I) = 1/6$$

• $P(E_i | I) = 1/2$
• $P(E_i | H_j, I)$:
 $P(E_1 | H_j, I) = j/5$
 $P(E_2 | H_j, I) = (5-j)/5$

→ Probability of E_i taking account all possible H_j → How much we are confident that E_i will occur.

Our tool:

$$P(H_j | E_i, I) = \frac{P(E_i | H_j, I)}{P(E_i | I)} P(H_j | I)$$

•
$$P(H_j | I) = 1/6$$

• $P(E_i | I) = 1/2$
• $P(E_i | H_j, I)$:
 $P(E_1 | H_j, I) = j/5$
 $P(E_2 | H_i, I) = (5-j)/5$

- Probability of E_i taking account all possible H_j \rightarrow How much we are confident that E_i will occur. Easy in this case, because of the symmetry of the problem. But already after the first extraction of a ball our opinion about the box content will change, and symmetry will break.

Our tool:

$$P(H_j | E_i, I) = \frac{P(E_i | H_j, I)}{P(E_i | I)} P(H_j | I)$$

•
$$P(H_j | I) = 1/6$$

• $P(E_i | I) = 1/2$
• $P(E_i | H_j, I)$:
 $P(E_1 | H_j, I) = j/5$
 $P(E_2 | H_j, I) = (5-j)/5$

But it easy to prove that $P(E_i | I)$ is related to the other ingredients, usually easier to 'measure' or to assess somehow, though vaguely

Our tool:

$$P(H_j | E_i, I) = \frac{P(E_i | H_j, I)}{P(E_i | I)} P(H_j | I)$$

•
$$P(H_j | I) = 1/6$$

• $P(E_i | I) = 1/2$
• $P(E_i | H_j, I)$:
 $P(E_1 | H_j, I) = j/5$
 $P(E_2 | H_j, I) = (5-j)/5$

But it easy to prove that $P(E_i | I)$ is related to the other ingredients, usually easier to 'measure' or to assess somehow, though vaguely

'decomposition law': $P(E_i | I) = \sum_j P(E_i | H_j, I) \cdot P(H_j | I)$ (\rightarrow Easy to check that it gives $P(E_i | I) = 1/2$ in our case).

Collecting the pieces of information we need

Our tool:

$$P(H_j | E_i, I) = \frac{P(E_i | H_j, I) \cdot P(H_j | I)}{\sum_j P(E_i | H_j, I) \cdot P(H_j | I)}$$

•
$$P(H_j | I) = 1/6$$

- $P(E_i | I) = \sum_j P(E_i | H_j, I) \cdot P(H_j | I)$
- $P(E_i \mid H_j, I)$:

 $P(E_1 | H_j, I) = j/5$ $P(E_2 | H_j, I) = (5-j)/5$

We are ready!

$$\longrightarrow R \text{ program}$$

First extraction

After first extraction (and reintroduction) of the ball:

- $P(H_j)$ changes
- $P(E_j)$ for next extraction changes

Note: The box is exactly in the same status as before

First extraction

After first extraction (and reintroduction) of the ball:

- $P(H_j)$ changes
- $P(E_j)$ for next extraction changes

Note: The box is exactly in the same status as before

Where is probability?

 \rightarrow Certainly not in the box!

The formulae used to *infer* H_i and to *predict* $E_j^{(2)}$ are related to the name of Bayes

The formulae used to *infer* H_i and to *predict* $E_j^{(2)}$ are related to the name of Bayes

Neglecting the background state of information *I*: $P(H_i | E_i) \qquad P(E_i | H_j)$

$$\frac{(\Pi j + \Sigma_i)}{P(H_j)} = \frac{1 (\Sigma_i + \Pi j)}{P(E_i)}$$

The formulae used to *infer* H_i and to *predict* $E_j^{(2)}$ are related to the name of Bayes

Neglecting the background state of information *I*:

$$\frac{P(H_j \mid E_i)}{P(H_j)} = \frac{P(E_i \mid H_j)}{P(E_i)}$$
$$P(H_j \mid E_i) = \frac{P(E_i \mid H_j)}{P(E_i)} P(H_j)$$

The formulae used to *infer* H_i and to *predict* $E_j^{(2)}$ are related to the name of Bayes

Neglecting the background state of information *I*:

$$\frac{P(H_j \mid E_i)}{P(H_j)} = \frac{P(E_i \mid H_j)}{P(E_i)}$$

$$P(H_j \mid E_i) = \frac{P(E_i \mid H_j)}{P(E_i)} P(H_j)$$

$$P(H_j \mid E_i) = \frac{P(E_i \mid H_j) \cdot P(H_j)}{\sum_j P(E_i \mid H_j) \cdot P(H_j)}$$

The formulae used to *infer* H_i and to *predict* $E_j^{(2)}$ are related to the name of Bayes

Neglecting the background state of information *I*:

$\frac{P(H_j \mid E_i)}{P(H_j)}$	=	$\frac{P(E_i \mid H_j)}{P(E_i)}$
$P(H_j \mid E_i)$	=	$\frac{P(E_i \mid H_j)}{P(E_i)} P(H_j)$
$P(H_j \mid E_i)$	=	$\frac{P(E_i \mid H_j) \cdot P(H_j)}{\sum_j P(E_i \mid H_j) \cdot P(H_j)}$
$P(H_j \mid E_i)$	\propto	$P(E_i H_j) \cdot P(H_j)$

The formulae used to *infer* H_i and to *predict* $E_j^{(2)}$ are related to the name of Bayes

Neglecting the background state of information *I*:

$\frac{P(H_j \mid E_i)}{P(H_j)}$	=	$\frac{P(E_i \mid H_j)}{P(E_i)}$
$P(H_j \mid E_i)$	=	$\frac{P(E_i \mid H_j)}{P(E_i)} P(H_j)$
$P(H_j \mid E_i)$	=	$\frac{P(E_i \mid H_j) \cdot P(H_j)}{\sum_j P(E_i \mid H_j) \cdot P(H_j)}$
$P(H_j E_i)$	\propto	$P(E_i H_j) \cdot P(H_j)$

Different ways to write the

Let us repeat the experiment:

Sequential use of Bayes theorem

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

 $P(H_j | E^{(1)}, E^{(2)}) \propto P(E^{(2)} | H_j, E^{(1)}) \cdot P(H_j | E^{(1)})$

Let us repeat the experiment:

Sequential use of Bayes theorem

$$P(H_j | E^{(1)}, E^{(2)}) \propto P(E^{(2)} | H_j, E^{(1)}) \cdot P(H_j | E^{(1)})$$

$$\propto P(E^{(2)} | H_j) \cdot P(H_j | E^{(1)})$$

Let us repeat the experiment:

Sequential use of Bayes theorem

$$P(H_j | E^{(1)}, E^{(2)}) \propto P(E^{(2)} | H_j, E^{(1)}) \cdot P(H_j | E^{(1)})$$

$$\propto P(E^{(2)} | H_j) \cdot P(H_j | E^{(1)})$$

$$\propto P(E^{(2)} | H_j) \cdot P(E^{(1)} | H_j) \cdot P_0(H_j)$$

Let us repeat the experiment:

Sequential use of Bayes theorem

$$P(H_{j} | E^{(1)}, E^{(2)}) \propto P(E^{(2)} | H_{j}, E^{(1)}) \cdot P(H_{j} | E^{(1)})$$

$$\propto P(E^{(2)} | H_{j}) \cdot P(H_{j} | E^{(1)})$$

$$\propto P(E^{(2)} | H_{j}) \cdot P(E^{(1)} | H_{j}) \cdot P_{0}(H_{j})$$

$$\propto P(E^{(1)}, E^{(1)} | H_{j}) \cdot P_{0}(H_{j})$$

Let us repeat the experiment:

Sequential use of Bayes theorem

$$P(H_{j} | E^{(1)}, E^{(2)}) \propto P(E^{(2)} | H_{j}, E^{(1)}) \cdot P(H_{j} | E^{(1)})$$

$$\propto P(E^{(2)} | H_{j}) \cdot P(H_{j} | E^{(1)})$$

$$\propto P(E^{(2)} | H_{j}) \cdot P(E^{(1)} | H_{j}) \cdot P_{0}(H_{j})$$

$$\propto P(E^{(1)}, E^{(1)} | H_{j}) \cdot P_{0}(H_{j})$$

$$P(H_{j} | data) \propto P(data | H_{j}) \cdot P_{0}(H_{j})$$

Let us repeat the experiment:

Sequential use of Bayes theorem

$$P(H_{j} | E^{(1)}, E^{(2)}) \propto P(E^{(2)} | H_{j}, E^{(1)}) \cdot P(H_{j} | E^{(1)})$$

$$\propto P(E^{(2)} | H_{j}) \cdot P(H_{j} | E^{(1)})$$

$$\propto P(E^{(2)} | H_{j}) \cdot P(E^{(1)} | H_{j}) \cdot P_{0}(H_{j})$$

$$\propto P(E^{(1)}, E^{(1)} | H_{j}) \cdot P_{0}(H_{j})$$

$$P(H_{i} | data) \propto P(data | H_{i}) \cdot P_{0}(H_{i})$$

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

$$P(H_{j} | E^{(1)}, E^{(2)}) \propto P(E^{(2)} | H_{j}, E^{(1)}) \cdot P(H_{j} | E^{(1)})$$

$$\propto P(E^{(2)} | H_{j}) \cdot P(H_{j} | E^{(1)})$$

$$\propto P(E^{(2)} | H_{j}) \cdot P(E^{(1)} | H_{j}) \cdot P_{0}(H_{j})$$

$$\propto P(E^{(1)}, E^{(1)} | H_{j}) \cdot P_{0}(H_{j})$$

$$P(H_{i} | data) \propto P(data | H_{i}) \cdot P_{0}(H_{i})$$

Learning from data using probability theory

Solution of the AIDS test problem

 $P(\mathsf{Pos} | \mathsf{HIV}) = 100\%$ $P(\mathsf{Pos} | \overline{\mathsf{HIV}}) = 0.2\%$ $P(\mathsf{Neg} | \overline{\mathsf{HIV}}) = 99.8\%$

We miss something: $P_{\circ}(\text{HIV})$ and $P_{\circ}(\overline{\text{HIV}})$: Yes! We need some input from our best knowledge of the problem. Let us take $P_{\circ}(\text{HIV}) = 1/600$ and $P_{\circ}(\overline{\text{HIV}}) \approx 1$ (the result is rather stable against *reasonable* variations of the inputs!)

$$\frac{P(\mathsf{HIV} | \mathsf{Pos})}{P(\mathsf{\overline{HIV}} | \mathsf{Pos})} = \frac{P(\mathsf{Pos} | \mathsf{HIV})}{P(\mathsf{Pos} | \mathsf{\overline{HIV}})} \cdot \frac{P_{\circ}(\mathsf{HIV})}{P_{\circ}(\mathsf{\overline{HIV}})}$$
$$= \frac{\approx 1}{0.002} \times \frac{0.1/60}{\approx 1} = 500 \times \frac{1}{600} = \frac{1}{1.2}$$

Odd ratios and Bayes factor

$$\begin{array}{lll} \displaystyle \frac{P(\mathsf{HIV} \,|\, \mathsf{Pos})}{P(\overline{\mathsf{HIV}} \,|\, \mathsf{Pos})} &=& \displaystyle \frac{P(\mathsf{Pos} \,|\, \mathsf{HIV})}{P(\mathsf{Pos} \,|\, \overline{\mathsf{HIV}})} \cdot \frac{P_{\circ}(\mathsf{HIV})}{P(\overline{\mathsf{HIV}})} \\ &=& \displaystyle \frac{\approx 1}{0.002} \times \frac{0.1/60}{\approx 1} = 500 \times \frac{1}{600} = \frac{1}{1.2} \\ \Rightarrow P(\mathsf{HIV} \,|\, \mathsf{Pos}) &=& 45.5\% \,. \end{array}$$

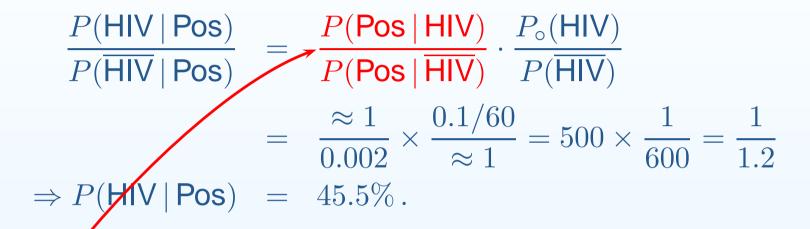
Odd ratios and Bayes factor

$$\begin{array}{lll} \displaystyle \frac{P(\mathsf{HIV} \mid \mathsf{Pos})}{P(\overline{\mathsf{HIV}} \mid \mathsf{Pos})} &=& \displaystyle \frac{P(\mathsf{Pos} \mid \mathsf{HIV})}{P(\mathsf{Pos} \mid \overline{\mathsf{HIV}})} \cdot \frac{P_{\circ}(\mathsf{HIV})}{P(\overline{\mathsf{HIV}})} \\ &=& \displaystyle \frac{\approx 1}{0.002} \times \frac{0.1/60}{\approx 1} = 500 \times \frac{1}{600} = \frac{1}{1.2} \\ \Rightarrow P(\mathsf{HIV} \mid \mathsf{Pos}) &=& 45.5\% \,. \end{array}$$

There are some advantages in expressing Bayes theorem in terms of odd ratios:

There is no need to consider all possible hypotheses (how can we be sure?)
 We just make a comparison of any couple of hypotheses!

Odd ratios and Bayes factor



There are some advantages in expressing Bayes theorem in terms of odd ratios:

There is no need to consider all possible hypotheses (how can we be sure?)

We just make a comparison of any couple of hypotheses!

-Bayes factor is usually much more inter-subjective, and it is often considered an 'objective' way to report how much the data favor each hypothesis.

Conclusioni

- Attenti alle formulette che girano su libri e appunti: ⇒ vanno passate al vaglio della ragione
- La logica del certo inadatta alla trattazione delle incertezze: risultati assurdi o troppo conservativi
- Lo strumento concettuale corretto per trattare l'incertezza è quello di probabilità
- ...a patto di usare il concetto intuitivo e non artefatti matematici
- ⇒ probabilità soggettiva.
 Niente di negativo nel termine, solo accettare il fatto che la probabilità dipende dallo stato di conoscenza e che questo varia dalle persone e dal tempo.
- Lo strumento per riaggiornare la probabilità alla luce delle nuove osservazioni è il Teorema di Bayes

Prossimamente

- La prossima volta vedremo come estendere l'inferenza bayesiana alle incertezze di misura,
- ... ma, concettualmente, abbiamo già detto tutto.

Documentazione:

 \Rightarrow Sito docente (\rightarrow Google \rightarrow Teaching)