A detail in Gauss' derivation

If $\left\{\begin{array}{l}\sum_{i} \psi\left(z_{i}\right)=0 \\ \sum_{i} z_{i}=0\end{array}\right.$ then, $\forall \alpha, \beta \neq 0, \Rightarrow\left\{\begin{array}{l}\alpha \sum_{i} \psi\left(z_{i}\right)=0 \\ \beta \sum_{i} z_{i}=0\end{array}\right.$
Then (making the sum would be the same, or even better, because later it would imply $k / 2=h^{2}$),

$$
\begin{aligned}
\alpha \sum_{i} \psi\left(z_{i}\right)-\beta \sum_{i} z_{i} & =0 \\
\sum_{i}\left[\alpha \psi\left(z_{i}\right)-\beta z_{i}\right] & =0 .
\end{aligned}
$$

Since this relation must hold independently of n and the values of z_{i}, then each term in the sum must vanishy, i.e.
or, $\forall z$,

$$
\alpha \psi\left(z_{i}\right)-\beta z_{i}=0
$$

$$
\psi(z)=\frac{\beta}{\alpha} z=k z
$$

