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“Probability is good sense reduced to a calculus” (Laplace)
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Probability

What is probability?
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Standard textbook definitions

p =
# favorable cases

#possible equiprobable cases

p =
# times the event has occurred

# independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of
circularity

p =
# favorable cases

#possible equally possible cases

p =
# times the event has occurred

# independent trials under same conditions

Laplace: “lorsque rien ne porte à croire que l’un de ces cas doit
arriver plutot que les autres”

Pretending that replacing ‘equi-probable’ by
‘equi-possible’ is just cheating students (as I did in my
first lecture on the subject. . . ).
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of
circularity, plus other problems

p =
# favorable cases

#possible equiprobable cases

p = limn→∞
# times the event has occurred

# independent trials under same condition

Future⇔ Past (believed
so)

n→∞: → “usque tandem?”
→ “in the long run we are all dead”
→ It limits the range of applicationsG. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 3



Definitions→ evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of
application.
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Definitions→ evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of
application.

BUT they cannot define the concept of probability!
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Definitions→ evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of
application.

In the probabilistic approach we are going to see

Rule A will be recovered immediately (under the
assumption of equiprobability, when it applies).

Rule B will result from a theorem (under well defined
assumptions). G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 4
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Probability
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→ how much we are confident that
something is true
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Probability

What is probability?

It is what everybody knows what it is
before going at school

→ how much we are confident that
something is true

→ how much we believe something

→ “A measure of the degree of belief that
an event will occur”

[Remark: ‘will’ does not imply future, but only
uncertainty.]
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An helpful diagram

The previous diagram seems to help the understanding of
the concept of probability

G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 6



An helpful diagram

(. . . but NASA guys are afraid of ‘subjective’, or ‘psychological’)

G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 7



Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!
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Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!

How to force people to assess how much they are
confident on something?

“The usual touchstone, whether that which someone asserts

is merely his persuasion – or at least his subjective

conviction, that is, his firm belief – is betting. It often happens

that someone propounds his views with such positive and

uncompromising assurance that he seems to have entirely

set aside all thought of possible error. A bet disconcerts him.

Sometimes it turns out that he has a conviction which can be

estimated at a value of one ducat, but not of ten. For he is

very willing to venture one ducat, but when it is a question of

ten he becomes aware, as he had not previously been, that it

may very well be that he is in error.” (Kant)

G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 8



Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!

How to force people to assess how much they are
confident on something?

1 X 2G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 8



Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!

How to force people to assess how much they are
confident on something?

Coherent bet:

you state the odds according on your beliefs;

somebody else will choose the direction of the bet.
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Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!

How to force people to assess how much they are
confident on something?

Coherent bet:

you state the odds according on your beliefs;

somebody else will choose the direction of the bet.

“His [Bouvard] calculations give him the mass of
Saturn as 3,512th part of that of the sun. Applying
my probabilistic formulae to these observations, I
find that the odds are 11,000 to 1 that the error in
this result is not a hundredth of its value.” (Laplace)
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Beliefs and ‘coherent’ bets

Remarks:

Subjective does not mean arbitrary!

How to force people to assess how much they are
confident on something?

Coherent bet:

you state the odds according on your beliefs;

somebody else will choose the direction of the bet.

“His [Bouvard] calculations give him the mass of
Saturn as 3,512th part of that of the sun. Applying
my probabilistic formulae to these observations, I
find that the odds are 11,000 to 1 that the error in
this result is not a hundredth of its value.” (Laplace)

→ P (3477 ≤MSun/MSat ≤ 3547 | I(Laplace)) = 99.99%

G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 8



‘C.L.’ Vs Degree of Confidence

Is a ‘conventional’ 95% C.L. lower/upper
bound a 19 to 1 bet?
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‘C.L.’ Vs Degree of Confidence

Is a ‘conventional’ 95% C.L. lower/upper
bound a 19 to 1 bet?

NO!
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‘C.L.’ Vs Degree of Confidence

Is a ‘conventional’ 95% C.L. lower/upper
bound a 19 to 1 bet?

NO!

It does not imply one has to be 95% confident on
something!
If you do so you are going to make a bad bet!
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‘C.L.’ Vs Degree of Confidence

Is a ‘conventional’ 95% C.L. lower/upper
bound a 19 to 1 bet?

NO!

It does not imply one has to be 95% confident on
something!
If you do so you are going to make a bad bet!

For more on the subject:
http://arxiv.org/abs/1112.3620

http://www.roma1.infn.it/~dagos/badmath/#added)

G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 9

http://arxiv.org/abs/1112.3620
http://www.roma1.infn.it/~dagos/badmath/#added


Mathematics of beliefs

The good news:

The basic laws of degrees of belief
are the same we get from the
inventory of favorable and possible
cases, or from events occurred in the
past.
[ Details skipped. . . ]
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Basic rules of probability

1. 0 ≤ P (A | I) ≤ 1

2. P (Ω | I) = 1

3. P (A ∪ B | I) = P (A | I) + P (B | I) [ if P (A ∩ B | I) = ∅ ]

4. P (A ∩ B | I) = P (A |B, I) · P (B | I) = P (B |A, I) · P (A | I)

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care on ‘re-conditioning’)
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Basic rules of probability

1. 0 ≤ P (A | I) ≤ 1

2. P (Ω | I) = 1

3. P (A ∪ B | I) = P (A | I) + P (B | I) [ if P (A ∩ B | I) = ∅ ]

4. P (A ∩ B | I) = P (A |B, I) · P (B | I) = P (B |A, I) · P (A | I)

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care on ‘re-conditioning’)

Note: 4. does not define conditional probability.
(Probability is always conditional probability!)
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Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploided!
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Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploided!

(Liberated by a curious ideology that forbits its use)

G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 12



A simple, powerful formula
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A simple, powerful formula

P (A |B | I)P (B | I) = P (B |A, I)P (A | I)
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A simple, powerful formula

Take the courage to use it!
G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 13



A simple, powerful formula

It’s easy if you try. . . !
G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 13



Telling it with Gauss’ words

A quote from the Princeps Mathematicorum (Prince of
Mathematicians) is a must in this town and in this place.
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Telling it with Gauss’ words

A quote from the Princeps Mathematicorum (Prince of
Mathematicians) is a must in this town and in this place.

P (Ci |data) =
P (data |Ci)

P (data)
P0(Ci)
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Telling it with Gauss’ words

A quote from the Princeps Mathematicorum (Prince of
Mathematicians) is a must in this town and in this place.

P (Ci |data) =
P (data |Ci)

P (data)
P0(Ci)

”post illa observationes” “ante illa observationes”

(Gauss)

G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 14



Bayes formulae

The essence is all contained in the fourth basic rule of
probability theory:
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Bayes formulae

The essence is all contained in the fourth basic rule of
probability theory:

P (Ci |E, I)

P (Ci | I)
=

P (E |Ci, I)

P (E | I)
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Bayes formulae

The essence is all contained in the fourth basic rule of
probability theory:

P (Ci |E, I)

P (Ci | I)
=

P (E |Ci, I)

P (E | I)

P (Ci |E, I) =
P (E |Cj , I)

P (E | I) P (Ci | I)
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Bayes formulae

The essence is all contained in the fourth basic rule of
probability theory:

P (Ci |E, I)

P (Ci | I)
=

P (E |Ci, I)

P (E | I)

P (Ci |E, I) =
P (E |Cj , I)

P (E | I) P (Ci | I)

P (Ci |E | I) =
P (E |Ci | I) · P (Ci | I)

∑

k P (E |Ck, I) · P (Ck | I)
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Bayes formulae

The essence is all contained in the fourth basic rule of
probability theory:

P (Ci |E, I)

P (Ci | I)
=

P (E |Ci, I)

P (E | I)

P (Ci |E, I) =
P (E |Cj , I)

P (E | I) P (Ci | I)

P (Ci |E | I) =
P (E |Ci | I) · P (Ci | I)

∑

k P (E |Ck, I) · P (Ck | I)
P (Ci |E, I) ∝ P (E |Ci, I) · P (Ci | I)
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Bayes formulae

The essence is all contained in the fourth basic rule of
probability theory:

P (Ci |E, I)

P (Ci | I)
=

P (E |Ci, I)

P (E | I)

P (Ci |E, I) =
P (E |Cj , I)

P (E | I) P (Ci | I)

P (Ci |E | I) =
P (E |Ci | I) · P (Ci | I)

∑

k P (E |Ck, I) · P (Ck | I)
P (Ci |E, I) ∝ P (E |Ci, I) · P (Ci | I)

or even (my preferred form to grasp its meaning):

P (Ci |E | I)
P (Cj |E | I)

=
P (E |Ci | I)
P (E |Cj | I)

· P (Ci | I)
P (Cj | I)

G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 15



Bayesian parametric inference

If we want to infer a continuous parameter p from a set of
data

→ straghtforwad extension to probability density functions
(pdf)
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Bayesian parametric inference

If we want to infer a continuous parameter p from a set of
data

→ straghtforwad extension to probability density functions
(pdf)

f (p | data, I) ∝ f (data | p, I) · f (p | I)
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Bayesian parametric inference

If we want to infer a continuous parameter p from a set of
data

→ straghtforwad extension to probability density functions
(pdf)

f (p | data, I) ∝ f (data | p, I) · f (p | I)

f (p | data, I) =
f (data | p, I) · f (p | I)

∫

p f (data | p, I) · f (p | I) dp

G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 16



Application to the six box problem

H0 H1 H2 H3 H4 H5

Remind:

E1 = White

E2 = Black

G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 17



Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2

P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2

P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Our prior belief about Hj
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2

P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei under a well defined hypothesis Hj

It corresponds to the ‘response of the apparatus in
measurements.
→ likelihood (traditional, rather confusing name!)
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2

P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

P (Hj | I) = 1/6

P (Ei | I) = 1/2

P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
We can rewrite it as
P (Ei | I) =

∑

j P (Ei |Hj , I) · P (Hj | I)
G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 18



We are ready

Now that we have set up our formalism, let’s play a little

analyse real data

some simulations

Then

Hj ←→ j ←→ pj

extending p to a continuum:

⇒ Bayes’ billiard

(prototype for all questions related to efficiencies,
branching ratios)

On the meaning of p

G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 19



Which box? Which ball?

Inferential/forecasting history:

1. k = 0
P0(Hj) = P (Hj | I0) (priors)

2. begin loop:

k = k + 1
⇒ E(k) (k-th extraction)

3. Pk(Hj | Ik) ∝ P (E(k) |Hj)× Pk−1(Hj | Ik)

Pk(Ei | Ik) =
∑

j P (Ei |Hj) · Pk(Hj | Ik)
4. → go to 2

G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 20



Which box? Which ball?

Inferential/forecasting history:

1. k = 0
P0(Hj) = P (Hj | I0) (priors)

2. begin loop:

k = k + 1
⇒ E(k) (k-th extraction)

3. Pk(Hj | Ik) ∝ P (E(k) |Hj)× Pk−1(Hj | Ik)

Pk(Ei | Ik) =
∑

j P (Ei |Hj) · Pk(Hj | Ik)
4. → go to 2

Let’s play!
G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 20



Bayes’ billiard

This is the original problem in the theory of chances solved
by Thomas Bayes in late ’700:

imagine you roll a ball at random on a billiard;

you mark the relative position of the ball along the
billiard’s length (l/L) and remove the ball

then you roll at random other balls

write down if it stopped left or right of the first ball;

remove it and go on with n balls.

Somebody has to guess the position of the first ball
knowing only how mane balls stopped left and how
many stoppe right

G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 21



Bayes’ billiard and Bernoulli trials

It is easy to recongnize the analogy:

Left/Right→ Success/Failure

if Left↔ Success:

l/L↔ p of binomial (Bernoulli trials)
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if Left↔ Success:

l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S, S, F, S, . . .} [f0 is uniform]:

f(p |S) ∝ f(S | p) = p
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if Left↔ Success:

l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S, S, F, S, . . .} [f0 is uniform]:

f(p |S) ∝ f(S | p) = p

f(p |S, S) ∝ f(S | p) · f(p |S) = p2
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Imagine a sequence {S, S, F, S, . . .} [f0 is uniform]:

f(p |S) ∝ f(S | p) = p

f(p |S, S) ∝ f(S | p) · f(p |S) = p2

f(p |S, S, F ) ∝ f(F | p) · f(p |S, S) = p2(1− p)
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l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S, S, F, S, . . .} [f0 is uniform]:

f(p |S) ∝ f(S | p) = p

f(p |S, S) ∝ f(S | p) · f(p |S) = p2

f(p |S, S, F ) ∝ f(F | p) · f(p |S, S) = p2(1− p)

. . . . . .

f(p |#S,#F ) ∝ p#S(1− p)#F = p#S(1− p)(1−#s)

G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 22



Bayes’ billiard and Bernoulli trials

It is easy to recongnize the analogy:

Left/Right→ Success/Failure

if Left↔ Success:

l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S, S, F, S, . . .} [f0 is uniform]:

f(p |S) ∝ f(S | p) = p

f(p |S, S) ∝ f(S | p) · f(p |S) = p2

f(p |S, S, F ) ∝ f(F | p) · f(p |S, S) = p2(1− p)

. . . . . .

f(p |#S,#F ) ∝ p#S(1− p)#F = p#S(1− p)(1−#s)

f(p |x, n) ∝ px(1− p)(n−x) [x = #S]
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Inferring the Binomial p

f(p |x, n,B) = (n+1)!
x! (n−x)! p

x (1− p)n−x ,
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Inferring the Binomial p

f(p |x, n,B) = (n+1)!
x! (n−x)! p

x (1− p)n−x ,

E(p) =
x+ 1

n+ 2
Laplace’s rule of successions

Var(p) =
(x+ 1)(n− x+ 1)

(n+ 3)(n+ 2)2

= E(p) (1− E(p))
1

n+ 3
.
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Interpretation of E(p)

Think at any future event Ei>n

⇒ if we were sure of p, then our confidence on Ei>n will be
exactly p, i.e.

P (Ei | p) = p .
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Think at any future event Ei>n

⇒ if we were sure of p, then our confidence on Ei>n will be
exactly p, i.e.

P (Ei | p) = p .

But we are uncertain about p.

How much should we believe Ei>n?.
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Interpretation of E(p)

Think at any future event Ei>n

⇒ if we were sure of p, then our confidence on Ei>n will be
exactly p, i.e.

P (Ei | p) = p .

But we are uncertain about p.

How much should we believe Ei>n?.

P (Ei>n |x, n,B) =

∫ 1

0

P (Ei | p) f(p |x, n,B)dp

=

∫ 1

0

p f(p |x, n,B)dp

= E(p)

=
x+ 1

n+ 2
(for uniform prior) .
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From frequencies to probabilities

E(p) =
x+ 1

n+ 2
Laplace’s rule of successions

Var(p) = E(p) (1− E(p))
1

n+ 3
.

For ‘large’ n, x and n− x: asymptotic behaviors of f(p):

E(p) ≈ pm =
x

n
[with pm mode of f(p)]

σp ≈
√

pm (1− pm)

n
−−−→
n→∞

0

p ∼ N (pm, σp) .

Under these conditions the frequentistic “definition”
(evaluation rule!) of probability (x/n) is recovered.
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Special case with x = 0

f(p | 0, n,B) = (n+ 1) (1− p)n

F (p | 0, n,B) = 1− (1− p)n+1

pm = 0

E(p) =
1

n+ 2
−→ 1

n

σ(p) =

√

(n+ 1)

(n+ 3)(n+ 2)2
−→ 1

n
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Special case with x = 0

f(p | 0, n,B) = (n+ 1) (1− p)n

F (p | 0, n,B) = 1− (1− p)n+1

pm = 0

E(p) =
1

n+ 2
−→ 1

n

σ(p) =

√

(n+ 1)

(n+ 3)(n+ 2)2
−→ 1

n

P (p ≤ pu | 0, n,B) = 95%

⇒ pu = 1− n+1
√
0.05 :

Probabilistic upper bound
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Special case with x = 0
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Special case with x = 0
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Special case with x = 0
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Special case with x = 0

For the case x = n

(like ‘observing’ a 100% efficiency):

→ just reason on the complementary

parameter

q = 1− p
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Continuing the game

We have seen ho to tackle with a single idea problems that
are treated difefrently in ‘standard statistics’:

comparing hypotheses

parametric inference
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parametric inference

You can continue the game

playing with other models of f(data | p, I)
make a simultaneous inference on several parameters

→ f(p1, p2, . . . |data, I)

take into account for systematics

→ “integrating over subsamples of I”
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We have seen ho to tackle with a single idea problems that
are treated difefrently in ‘standard statistics’:

comparing hypotheses

parametric inference

You can continue the game

playing with other models of f(data | p, I)
make a simultaneous inference on several parameters

→ f(p1, p2, . . . |data, I)

take into account for systematics

→ “integrating over subsamples of I”

etc.
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Continuing the game

We have seen ho to tackle with a single idea problems that
are treated difefrently in ‘standard statistics’:

comparing hypotheses

parametric inference

You can continue the game
. . . although at a certain point you need to face
computational issues
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parametric inference

You can continue the game
. . . although at a certain point you need to face
computational issues

→ that was of the main reason why Laplace’s methods
were set apart and frequentistics methods fourished

But we can now benefit of powerful computers and
impressive improvements in computation methods
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Continuing the game

We have seen ho to tackle with a single idea problems that
are treated difefrently in ‘standard statistics’:

comparing hypotheses

parametric inference

You can continue the game
. . . although at a certain point you need to face
computational issues

→ that was of the main reason why Laplace’s methods
were set apart and frequentistics methods fourished

But we can now benefit of powerful computers and
impressive improvements in computation methods

We have no longer excuses!!
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OK, . . . but the priors?

Priors are an important ingredient of the framework:
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They are crucial in the Bayes theorem:

there is no other way to perform a probabilistic
inference without passing through priors

. . . although they can be often so vague to be
ignored.
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G. D’Agostini, Probabilistic Reasoning [2] (Stellenbosch, 23 November 2013) – c© G. D’Agostini – p. 28



OK, . . . but the priors?

Priors are an important ingredient of the framework:
They are crucial in the Bayes theorem:

there is no other way to perform a probabilistic
inference without passing through priors

. . . although they can be often so vague to be
ignored.

They allow us to use consistently all pieces of prior
information. And we all have much prior information in
our job!
Only the perfect idiot hase no priors

Mistrust all prior-free methods that pretend to provide
numbers that should mean how you have to be
confident in something.
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OK, . . . but the priors?

Priors are an important ingredient of the framework:
They are crucial in the Bayes theorem:

there is no other way to perform a probabilistic
inference without passing through priors

. . . although they can be often so vague to be
ignored.

They allow us to use consistently all pieces of prior
information. And we all have much prior information in
our job!
Only the perfect idiot hase no priors

Mistrust all prior-free methods that pretend to provide
numbers that should mean how you have to be
confident in something.
(Diffidate chi vi promette di far germogliar zecchini nel
Campo dei Miracoli! – Pinocchio docet)
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Good reasoning Vs ’prohibitive calculations’

The main reasons why the so called Bayesian reasoning
hab been blooming in the last decades are related to

computational power

helped from brilliant ideas on how to use it
(but sterile without modern computers!)
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instead of methods that require integrals, methods have
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⇒ Maximum Likelihood
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Good reasoning Vs ’prohibitive calculations’

The main reasons why the so called Bayesian reasoning
hab been blooming in the last decades are related to

computational power

helped from brilliant ideas on how to use it
(but sterile without modern computers!)

→ many frequentistic ideas had their raison d’être in the
computational barrier (and many simplified – often
simplistic – methods were ingeniously worked out)

instead of methods that require integrals, methods have
been ’invented’ that only require derivatives
⇒ Maximum Likelihood . . . often a good approximated
solution under some assumptions usually unkown to
practitioners.

→ no longer an excuse!
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Conclusions from Part - 2

The probabilistic framework basically set up by Laplace
in his monumental work is healthy and grows up well
(browse e.g. Amazon.com)
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Conclusions from Part - 2

The probabilistic framework basically set up by Laplace
in his monumental work is healthy and grows up well
(browse e.g. Amazon.com)

It is very close to the natural way of reasoning of
physicists (as of everybody else).

Its consistent application in small-complex problems
was prohibitive many years ago.

But it is now possible thank to progresses in applied
mathematics and computation.

It makes little sense to stick to old ‘ah hoc’ methods that
had their raison d’être in the computational barrier.

Mistrust all results that sound as ‘confidence’,
’probability’ etc about physics quantities, if they are
obtained by methods that do not contemplate ’beliefs’.
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