Introduction to Probabilistic Reasoning
 - inference, forecasting, decision -

Giulio D'Agostini
giulio.dagostini@romal.infn.it

Dipartimento di Fisica
Università di Roma La Sapienza

- Part 3 -
"Probability is good sense reduced to a calculus" (Laplace)

Contents

- Summary of relevant formulae
- Propagating uncertainty the straight way
- Simple case of the Gaussian distribution :
- when (and why) ML provides a good 'estimates
- and why it can never tell something meaningfull about uncertainties
- the role of conjugate priors, with application to the Bernoulli trials ('binomial problem'): \rightarrow beta pdf.
- Handling systematics, with the special case of two measurements with Gaussian response of the same detector, affected by a possible systematic error:
- how the overall uncertainty increases
- how the two results become correlated
- Examples with OpenBUGS (see web page) [\rightarrow JAGS]

Important formulae

(For continous uncertain variables)
product rule:

$$
f_{x y}(x, y \mid I)=f_{x \mid y}(x \mid y, I) f_{y}(y \mid I)
$$

\rightarrow independence: $\quad f_{x y}(x, y \mid I)=f_{x}(x \mid I) f_{y}(y \mid I)$
marginalizzation:

$$
\begin{aligned}
& \int f_{x y}(x, y \mid I) d y=f_{x}(x \mid I) \\
& \int f_{x y}(x, y \mid I) d x=f_{y}(y \mid I)
\end{aligned}
$$

decomposition:

$$
\begin{aligned}
& f_{x}(x \mid I)=\int f_{x \mid y}(x \mid y, I) f_{y}(y \mid I) d y \\
& f_{y}(y \mid I)=\int f_{y \mid x}(y \mid x, I) f_{x}(x \mid I) d x \\
& \text { "weighted average" }
\end{aligned}
$$

Important formulae - continued

Bayes rule (using observation x and 'true value' μ and simplifying the notation)

$$
\begin{aligned}
f(\mu \mid x, I) & =\frac{(\mu, x \mid I)}{f(x \mid I)} \\
& =\frac{f(x \mid \mu, I) f(\mu \mid I)}{f(x \mid I)} \\
& =\frac{f(x \mid \mu, I) f(\mu \mid I)}{\int f(x \mid \mu, I) f(\mu \mid I) d \mu} \\
& \propto f(x \mid \mu, I) f(\mu \mid I)
\end{aligned}
$$

(In the following ' I ' will be implicit in most cases)

Propagation of uncertainties

- "What has to do with Bayesian?"

Propagation of uncertainties

- "What has to do with Bayesian?"
\Rightarrow Think what 'most' of you have been taught in laboratory courses (typically):
- Use probabilistic formulae for object that are not 'random variables' (in the frequentistic approach)

Propagation of uncertainties

- "What has to do with Bayesian?"
\Rightarrow Think what 'most' of you have been taught in laboratory courses (typically):
- Use probabilistic formulae for object that are not 'random variables' (in the frequentistic approach)
An insult to logic!!

Propagation of uncertainties

- "What has to do with Bayesian?"
\Rightarrow Think what 'most' of you have been taught in laboratory courses (typically):
- Use probabilistic formulae for object that are not 'random variables' (in the frequentistic approach)
An insult to logic!!
- In the Bayesian approach it is straightforward because true values are uncertain variables.

Propagation of uncertainties

- "What has to do with Bayesian?"
\Rightarrow Think what 'most' of you have been taught in laboratory courses (typically):
- Use probabilistic formulae for object that are not 'random variables' (in the frequentistic approach) An insult to logic!!
- In the Bayesian approach it is straightforward because true values are uncertain variables.
- For details see 2005 CERN lectures (nr. 4, pp. 17-28)
http://indico.cern.ch/conferenceDisplay.py conferenceDisplay.py?confld=a043715

back to our slides

- a very simple inference in a gaussian model
- conjugate priors
- systematics

Simple case of Gaussian errors

$x \sim \mathcal{N}(\mu \sigma):$

$$
\begin{aligned}
f(x \mid \mu, I)= & \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \\
f(\mu \mid x, I)= & \frac{\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] f(\mu \mid I)}{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] f(\mu \mid I) \mathrm{d} \mu}
\end{aligned}
$$

IF $f(\mu \mid I) \approx \mathrm{const}$

$$
f(\mu \mid x, I)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(\mu-x)^{2}}{2 \sigma^{2}}\right]
$$

$\Rightarrow \mathrm{E}[\mu], \sigma(\mu)$, etc.

Simple case of Gaussian errors

$x \sim \mathcal{N}(\mu \sigma):$

$$
\begin{aligned}
f(x \mid \mu, I)= & \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \\
f(\mu \mid x, I)= & \frac{\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] f(\mu \mid I)}{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] f(\mu \mid I) \mathrm{d} \mu}
\end{aligned}
$$

IF $f(\mu \mid I) \approx \mathrm{const}$

$$
f(\mu \mid x, I)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(\mu-x)^{2}}{2 \sigma^{2}}\right]
$$

$\Rightarrow \mathbf{E}[\mu], \sigma(\mu)$, etc.
\Rightarrow maximum of posterior $=$ maximum of likelihood

Simple case of Gaussian errors

$x \sim \mathcal{N}(\mu \sigma):$

$$
\begin{aligned}
f(x \mid \mu, I)= & \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \\
f(\mu \mid x, I)= & \frac{\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] f(\mu \mid I)}{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] f(\mu \mid I) \mathrm{d} \mu}
\end{aligned}
$$

IF $f(\mu \mid I) \approx \mathrm{const}$

$$
f(\mu \mid x, I)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(\mu-x)^{2}}{2 \sigma^{2}}\right]
$$

$\Rightarrow \mathbf{E}[\mu], \sigma(\mu)$, etc.
\Rightarrow frequentistic equivalent of $\sigma(\mu)$?

Simple case of Gaussian errors

$x \sim \mathcal{N}(\mu \sigma):$

$$
\begin{aligned}
f(x \mid \mu, I)= & \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \\
f(\mu \mid x, I)= & \frac{\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] f(\mu \mid I)}{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] f(\mu \mid I) \mathrm{d} \mu}
\end{aligned}
$$

IF $f(\mu \mid I) \approx \mathrm{const}$

$$
f(\mu \mid x, I)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(\mu-x)^{2}}{2 \sigma^{2}}\right]
$$

$\Rightarrow \mathrm{E}[\mu], \sigma(\mu)$, etc.
\Rightarrow frequentistic equivalent of $\sigma(\mu)$? NO!

Simple case of Gaussian errors

$x \sim \mathcal{N}(\mu \sigma):$

$$
\begin{aligned}
f(x \mid \mu, I)= & \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \\
f(\mu \mid x, I)= & \frac{\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] f(\mu \mid I)}{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] f(\mu \mid I) \mathrm{d} \mu}
\end{aligned}
$$

IF $f(\mu \mid I) \approx \mathrm{const}$

$$
f(\mu \mid x, I)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(\mu-x)^{2}}{2 \sigma^{2}}\right]
$$

$\Rightarrow \mathrm{E}[\mu], \sigma(\mu)$, etc.
\Rightarrow frequentistic equivalent of $\sigma(\mu)$? NO! \rightarrow 'prescriptions'!!

Prior conjugate

Since ever there have been computational problems:
\rightarrow survive with approximations e.g. "Gaussian approximation" of the posterior (somehow a reflex of the Central Limit theorem)

Prior conjugate

Since ever there have been computational problems:
\rightarrow survive with approximations
e.g. "Gaussian approximation" of the posterior (somehow a reflex of the Central Limit theorem)
Another famous approximation is to chose a 'proper' shape for the prior:
\rightarrow compromize between real beliefs and easy math!

Prior conjugate

Since ever there have been computational problems:
\rightarrow survive with approximations
e.g. "Gaussian approximation" of the posterior (somehow a reflex of the Central Limit theorem)
Another famous approximation is to chose a 'proper' shape for the prior:
\rightarrow compromize between real beliefs and easy math!
\rightarrow inferring p of binomial
\rightarrow black/green board

Beta distribution

$X \sim \operatorname{Beta}(r, s)):$

$$
f(x \mid \operatorname{Beta}(r, s))=\frac{1}{\beta(r, s)} x^{r-1}(1-x)^{s-1} \quad\left\{\begin{array}{l}
r, s>0 \\
0 \leq x \leq 1
\end{array}\right.
$$

Denominator is just normalization, i.e.

$$
\beta(r, s)=\int_{0}^{1} x^{r-1}(1-x)^{s-1} \mathbf{d} x .
$$

\rightarrow beta function, resulting in $\beta(r, s)=\frac{\Gamma(r) \Gamma(s)}{\Gamma(r+s)}$.
\Rightarrow very flexible distribution
\Rightarrow file beta_distribution.pdf

Uncertainties due to systematics

This is another subjects where the 'frequentistic' approach fails miserably:

- no consistent theory, just 'prescriptions'

1. add them linearly
2. add the quadratically
3. do 1 if small, 2 if large; ...

Uncertainties due to systematics

This is another subjects where the 'frequentistic' approach fails miserably:

- no consistent theory, just 'prescriptions'

1. add them linearly
2. add the quadratically
3. do 1 if small, 2 if large; ...

Straightforward in the bayesian approach:
\rightarrow influence quantities from which the final results may depend (calibrations constants, etc.) are characterized by an uncertain value, and hence we can attach to them probabilities, and use probability theory.
(This is what, in practice, also physicists wh think to adhere to fquentistic school finally do, as in error propagation.)

1. Conditional inference

Let's make esplicit one of the pieces of information:

1. Conditional inference

Let's make esplicit one of the pieces of information:

$$
f\left(\mu \mid x_{0}, I\right)=f\left(\mu \mid x_{0}, h, I_{0}\right)
$$

then use a probability theory

$$
f\left(\mu \mid x_{0}, I\right)=\int f\left(\mu \mid x_{0}, h, I_{0}\right) f\left(h \mid I_{0}\right) d h
$$

Easy, logical, it 'does work'

2. Joint inference + marginalization

We can infer both μ and h from the data (One piece of data, two inferred quantities? So what? they will just be 100\% correlated)

$$
f\left(\mu, h \mid x_{0}, I\right) \propto f\left(x_{0} \mid \mu, h, I\right) \cdot f_{0}(\mu, h \mid I)
$$

And then apply marginalization with respect to the so called nuisance parameter

$$
f\left(\mu \mid x_{0}, I\right)=\int f\left(\mu h \mid x_{0}, I_{0}\right) f\left(h \mid I_{0}\right) d h
$$

3. Raw result \rightarrow corrected result

As third possibility, we might think at a raw result

- obtained at a fixed value of h (its nominal, 'best' value)
- only affected by uncertainties due to random errors (or all others, a part those coming from hour imperfect knpwledge about h

$$
f\left(\mu_{R} \mid x_{0}, I\right)
$$

Then think to a corrections due to all possible values of h, consistently with out best knowledge:

$$
\mu=g\left(\mu_{R}, h\right)
$$

[$g\left(\mu_{R}, h\right)$ is not a pdf!]
\rightarrow then use propagation of uncertainties
Example: $\mu=\mu_{R}+z$, where z is an offset known to be $0 \pm \sigma_{z}$ \Rightarrow one of the assigned problems

Common systematic \rightarrow correlation

As well understood, if measurements have a systematic effect in common, the results will become correlated. As it happens when two quantities depend from a third one:

$$
\begin{aligned}
\mu_{1} & =\mu_{R_{1}}+z \\
\mu_{2} & =\mu_{R_{2}}+z
\end{aligned}
$$

\Rightarrow common uncertainty in z affects μ_{1} and μ_{2} in the same direction:
μ_{1} and μ_{2} will become positively correlated.
\Rightarrow assigned problem
For a more detailed example, using ' reasoning 2' see file em common_systematics.pdf (sections 6.8-6.10)

Conclusions

Conclusions

Conclusions

