Beta distribution

$X \sim \operatorname{Beta}(r, s)):$

$$
f(x \mid \operatorname{Beta}(r, s))=\frac{1}{\beta(r, s)} x^{r-1}(1-x)^{s-1} \quad\left\{\begin{array}{l}
r, s>0 \tag{4.54}\\
0 \leq x \leq 1
\end{array}\right.
$$

The denominator is just for normalization, i.e.

$$
\beta(r, s)=\int_{0}^{1} x^{r-1}(1-x)^{s-1} \mathrm{~d} x
$$

Indeed this integral defines the beta function, resulting in

$$
\beta(r, s)=\frac{\Gamma(r) \Gamma(s)}{\Gamma(r+s)}
$$

Since the beta distribution is not very popular among physicists, but very interesting for inferential purposes as conjugate distribution of the binomial, we show in Fig. 4.1 the variety of shapes that it can assume depending on the parameters r and s. Expected value and variance are:

$$
\begin{align*}
\mathrm{E}(X) & =\frac{r}{r+s} \tag{4.55}\\
\operatorname{Var}(X) & =\frac{r s}{(r+s+1)(r+s)^{2}} \tag{4.56}
\end{align*}
$$

If $r>1$ and $s>1$ the mode is unique, equal to $(r-1) /(r+s-2)$.

Triangular distribution

A convenient distribution for a rough description of subjective uncertainty on the value of influence quantities ('systematic effects') is given by the triangular distribution. This distribution models beliefs which decrease linearly in either side of the maximum $\left(x_{0}\right)$ up to $x_{0}+\Delta x_{+}$ on the right side and $x_{0}-\Delta x_{-}$on the left side (see Fig. 8.1). Expected value and variance are given by

$$
\begin{align*}
\mathrm{E}(X) & =x_{0}+\frac{\Delta x_{+}-\Delta x_{-}}{3} \tag{4.57}\\
\sigma^{2}(X) & =\frac{\Delta^{2} x_{+}+\Delta^{2} x_{-}+\Delta x_{+} \Delta x_{-}}{18} \tag{4.58}
\end{align*}
$$

In the case of a symmetric triangular distribution $\left(\Delta x_{+}=\Delta x_{-}=\Delta x\right)$

A) $r=s=1,1.1$ e 0.9	B)
C) $r=s=\mathbf{0 . 8}, 0.5,0.2,0.1$	D) $r=0.8 ; s=\mathbf{1 . 2}, 1.5,2,3$
E) $s=0.8 ; r=\mathbf{1 . 2}, 1.5,2,3$	F) $s=2 ; r=\mathbf{0 . 8}, 0.6,0.4,0.2$
G) $(r, s)=(3,5),(\mathbf{5}, \mathbf{5}),(5,3)$	$\mathbf{H})(r, s)=(30,50),(\mathbf{5 0}, 50),(50,30)$

Fig. 4.1 Examples of Beta distributions for some values of r and s. The parameters in bold refer to continuous curves.

