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To avoid singularities in the integral, let us take a power of m slightly

greater than −1, for example −0.99, and let us limit its domain to 30,

getting

f◦S(m) =
0.01 · 300.01

m0.99
. (6.27)

The upper limit becomes

m < 0.006 eV/c2 at 0.95% probability . (6.28)

Any experienced physicist would find this result ridiculous. The upper

limit is about 0.2% of the experimental resolution; rather like expect-

ing to resolve objects having dimensions smaller than a micron with a

design ruler! Note instead that in the previous examples the limit was

always of the order of magnitude of the experimental resolution σ. As

f◦S(m) becomes more and more peaked at zero (power of x → 1) the

limit gets smaller and smaller. This means that, asymptotically, the

degree of belief that m = 0 is so high that whatever you measure you

will conclude that m = 0: you could use the measurement to calibrate

the apparatus! This means that this choice of initial distribution was

unreasonable.

Instead, priors motivated by the positive attitude of the researchers are

much more stable, and even when the observation is “very negative”

the result is stable, and one always gets a limit of the order of the

experimental resolution. Anyhow, it is also clear that when x is several

σ below zero one starts to suspect that “something is wrong with the

experiment”, which formally corresponds to doubts about the likelihood

itself. In this case one needs to change analysis model. An example of

remodelling the likelihood is shown in Chapter 11.

We shall come back to this delicate issue in Chapter 13.

6.8 Uncertainty of the instrument scale offset

In our scheme any quantity of influence of which we do not know the exact

value is a source of systematic error. It will change the final distribution

of µ and hence its uncertainty. We have already discussed the most gen-

eral case in Sec. 5.1.1. Let us make a simple application making a small

variation to the example in Sec. 6.2: the “zero” of the instrument is not

known exactly, owing to calibration uncertainty. This can be parametrized
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assuming that its true value Z is normally distributed around 0 (i.e. the

calibration was properly done!) with a standard deviation σZ . Since, most

probably, the true value of µ is independent of the true value of Z, the

initial joint probability density function can be written as the product of

the marginal ones:

f◦(µ, z) = f◦(µ) f◦(z) = k
1√

2 π σZ

exp

[

− z2

2 σ2
Z

]

. (6.29)

Also the likelihood changes with respect to Eq. (6.1):

f(x1 |µ, z) =
1√

2 π σ1

exp

[

− (x1 − µ− z)2

2 σ2
1

]

. (6.30)

Putting all the pieces together and making use of Eq. (5.3) we finally get

f(µ |x1, . . . , f◦(z)) =

∫

1√
2 π σ1

exp
[

− (x1−µ−z)2

2 σ2

1

]

1√
2π σZ

exp
[

− z2

2 σ2

Z

]

dz

∫∫

1√
2π σ1

exp
[

− (x1−µ−z)2

2 σ2

1

]

1√
2π σZ

exp
[

− z2

2 σ2

Z

]

dµ dz
.

Integrating we get

f(µ) = f(µ |x1, . . . , f◦(z)) =
1√

2 π
√

σ2
1 + σ2

Z

exp

[

− (µ− x1)
2

2 (σ2
1 + σ2

Z)

]

.

(6.31)

(It may help to know that

∫ +∞

−∞
exp

[

b x− x2

a2

]

dx =
√
a2 π exp

[

a2 b2

4

]

.)

For an introduction to Bayesian methods, where Gaussian integrals are also

discussed, see e.g. Ref. [46]. The result is that f(µ) is still a Gaussian, but

with a larger variance. The global standard uncertainty is the quadratic

combination of that due to the statistical fluctuation of the data sample and

the uncertainty due to the imperfect knowledge of the systematic effect:

σ2
tot = σ2

1 + σ2
Z . (6.32)

This result (a theorem under well stated conditions!) is often used as a

‘prescription’, although there are still some “old-fashioned” recipes which

require different combinations of the contributions to be performed.

It must be noted that in this framework it makes no sense to speak of

“statistical” and “systematical” uncertainties, as if they were of a different

nature. They have the same probabilistic nature: Qn1
is around µ with a
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standard deviation σ1, and Z is around 0 with standard deviation σZ . What

distinguishes the two components is how the knowledge of the uncertainty

is gained: in one case (σ1) from repeated measurements; in the second

case (σZ) the evaluation was done by someone else (the constructor of the

instrument), or in a previous experiment, or guessed from the knowledge

of the detector, or by simulation, etc. This is the reason why the ISO

Guide [5] prefers the generic names Type A and Type B for the two kinds of

contribution to global uncertainty (see Sec. 8.7). In particular, the name

“systematic uncertainty” should be avoided, while it is correct to speak

about “uncertainty due to a systematic effect”.

6.9 Correction for known systematic errors

It is easy to be convinced that if our prior knowledge about Z was of the

kind

Z ∼ N (z◦, σZ) (6.33)

the result would have been

µ ∼ N
(

x1 − z◦,
√

σ2
1 + σ2

Z

)

, (6.34)

i.e. one has first to correct the result for the best value of the systematic

error and then include in the global uncertainty a term due to imperfect

knowledge about it. This is a well-known and practised procedure, although

there are still people who confuse z◦ with its uncertainty.

6.10 Measuring two quantities with the same instrument

having an uncertainty of the scale offset

Let us take an example which is a little more complicated (at least from

the mathematical point of view) but conceptually very simple and also

very common in laboratory practice. We measure two physical quantities

with the same instrument, assumed to have an uncertainty on the “zero”,

modelled with a normal distribution as in the previous sections. For each

of the quantities we collect a sample of data under the same conditions,

which means that the unknown offset error does not change from one set of

measurements to the other. Calling µ1 and µ2 the true values, x1 and x2

the sample averages, σ1 and σ2 the average’s standard deviations, and Z the
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true value of the “zero”, the initial probability density and the likelihood

are

f◦(µ1, µ2, z) = f◦(µ1) f◦(µ2) f◦(z) = k
1√

2 π σZ

exp

[

− z2

2 σ2
Z

]

f(x1, x2 |µ1, µ2, z) =
1√

2 π σ1

exp

[

− (x1 − µ1 − z)2

2 σ2
1

]

× 1√
2 π σ2

exp

[

− (x2 − µ2 − z)2

2 σ2
2

]

=
1

2 π σ1σ2
exp

[

−1

2

(

(x1 − µ1 − z)2

σ2
1

+
(x2 − µ2 − z)2

σ2
2

)]

. (6.35)

The result of the inference is now the joint probability density function of

µ1 and µ2:

f(µ1, µ2 |x1, x2, σ1, σ2, f◦(z)) =

∫

f(x1, x2 |µ1, µ2, z) f◦(µ1, µ2, z)dz
∫

. . . dµ1 dµ2 dz
,

(6.36)

where expansion of the functions has been omitted for the sake of clarity.

Integrating we get

f(µ1, µ2) =
1

2 π
√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z

√

1− ρ2

× exp

{

− 1

2 (1− ρ2)

[

(µ1 − x1)
2

σ2
1 + σ2

Z

−2 ρ
(µ1 − x1)(µ2 − x2)

√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z

+
(µ2 − x2)

2

σ2
2 + σ2

Z

]}

, (6.37)

where

ρ =
σ2
Z

√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z

. (6.38)

If σZ vanishes then Eq. (6.37) has the simpler expression

f(µ1, µ2) −−−−→
σZ→0

1√
2 π σ1

exp

[

− (µ1 − x1)
2

2 σ2
1

]

1√
2 π σ2

exp

[

− (µ2 − x2)
2

2 σ2
2

]

,

(6.39)

i.e. if there is no uncertainty on the offset calibration then the joint den-

sity function f(µ1, µ2) is equal to the product of two independent normal
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functions, i.e. µ1 and µ2 are independent. In the general case we have to

conclude the following.

• The effect of the common uncertainty σZ makes the two values corre-

lated, since they are affected by a common unknown systematic error.

• The joint density function is a bivariate Gaussian distribution of param-

eters x1, σµ1
=

√

σ2
1 + σ2

Z , x2, σµ2
=

√

σ2
2 + σ2

Z , and ρ (see example

of Fig. 4.2).

• The marginal distributions are still normal:

µ1 ∼ N
(

x1,
√

σ2
1 + σ2

Z

)

, (6.40)

µ2 ∼ N
(

x2,
√

σ2
2 + σ2

Z

)

. (6.41)

• The covariance between µ1 and µ2 is

Cov(µ1, µ2) = ρ σµ1
σµ2

= ρ
√

σ2
1 + σ2

Z

√

σ2
2 + σ2

Z = σ2
Z . (6.42)

• The correlation coefficient is always non-negative (ρ ≥ 0), as intuitively

expected from the definition of this kind of systematic error. The cor-

relation coefficient vanishes when σZ is much smaller than σ1 and σ2,

tends to 1 if σZ dominates (the uncertainties become 100% correlated).

• The distribution of any function g(µ1, µ2) can be calculated using the

standard methods of probability theory. For example, one can demon-

strate that the sum S = µ1 + µ2 and the difference D = µ1 − µ2 are

also normally distributed (see also the introductory discussion to the

central limit theorem and Sec. 8.13 for the calculation of averages and

standard deviations):

S ∼ N
(

x1 + x2,
√

σ2
1 + σ2

2 + (2 σZ)2
)

, (6.43)

D ∼ N
(

x1 − x2,
√

σ2
1 + σ2

2

)

. (6.44)

The result can be interpreted in the following way.

– The uncertainty on the difference does not depend on the common

offset uncertainty: whatever the value of the true “zero” is, it cancels

in differences.
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– In the sum, instead, the effect of the common uncertainty is some-

what amplified since it enters “in phase” in the global uncertainty

of each of the quantities.

6.11 Indirect calibration

Let us use the result of the previous section to solve another typical prob-

lem of measurements. Suppose that after (or before, it doesn’t matter)

we have done the measurements of x1 and x2 and we have the final result,

summarized in Eq. (6.37), we know the “exact” value of µ1 (for example we

perform the measurement on a reference). Let us call it µ◦
1. Will this infor-

mation provide a better knowledge of µ2? In principle yes: the difference

between x1 and µ◦
1 defines the systematic error (the true value of the “zero”

Z). This error can then be subtracted from x2 to get a corrected value.

Also the overall uncertainty of µ2 should change, intuitively it “should”

decrease, since we are adding new information. But its value doesn’t seem

to be obvious, since the logical link between µ◦
1 and µ2 is µ◦

1 → Z → µ2.

The problem can be solved exactly using the concept of conditional

probability density function f(µ2 |µ◦
1) [see Eqs. (4.83)-(4.84)]. We get

µ2 |µ◦

1
∼ N



x2 +
σ2
Z

σ2
1 + σ2

Z

(µ◦
1 − x1),

√

σ2
2 +

(

1

σ2
1

+
1

σ2
Z

)−1


 . (6.45)

The best value of µ2 is shifted by an amount ∆, with respect to the mea-

sured value x2, which is not exactly x1 − µ◦
1, as was näıvely guessed, and

the uncertainty depends on σ2, σZ and σ1. It is easy to be convinced that

the exact result is more reasonable than the (suggested) first guess. Let us

rewrite ∆ in two different ways:

∆ =
σ2
Z

σ2
1 + σ2

Z

(µ◦
1 − x1) (6.46)

=
1

1
σ2

1

+ 1
σ2

Z

[

1

σ2
1

· (x1 − µ◦
1) +

1

σ2
Z

· 0
]

. (6.47)

• Equation (6.46) shows that one has to apply the correction x1−µ◦
1 only

if σ1 = 0. If instead σZ = 0 there is no correction to be applied, since

the instrument is perfectly calibrated. If σ1 ≈ σZ the correction is half

of the measured difference between x1 and µ◦
1.


