TEST DELLA SIMMETRIA CPT NEL SISTEMA DEI MESONI K NEUTRI

Presentazione: Marco Vanadia Docente Responsabile: Antonio Di Domenico Corso di Fisica Nucleare e Subnucleare 2, professor Carlo Dionisi, AA 2007-2008

SOMMARIO

- •Simmetrie discrete e Teorema CPT
- •Il sistema dei mesoni K neutri e le violazioni di simmetria
- •Mesoni K neutri in una Φ-FACTORY
- •Decadimenti semileptonici, asimmetrie, relazione di Bell-Steinberger
- •Struttura del detector KLOE e K tagging
- •Selezione eventi: TOF, energia mancante, variabili cinematiche
- •Risultati sperimentali

SIMMETRIE C,P,T E LORO VIOLAZIONI

In Meccanica Quantistica le simmetrie di un sistema sono legate a doppio filo a leggi di conservazione di grandezze fisiche, e quindi, per le particelle, di numeri quantici.

Studiare le simmetrie di un sistema fisico porta quindi alla conoscenza di importanti proprietà fisiche del sistema stesso.

In fisica delle particelle si introducono le simmetrie discrete:

•parità P •coniugazione di carica C (che trasforma particelle in antiparticelle e viceversa) •inversione temporale T

Queste simmetrie sono **conservate** da interazioni **FORTE** e **EM**, ma <u>non</u> dalla **DEBOLE**, come dimostrato dall'esperimento condotto a fine degli anni '50 da Madam Wu e come confermato poi da esperimenti sui decadimenti beta di pione e muone.

Come visto nel corso, nel 1964 misure sui mesoni K neutri hanno dimostrato che <u>l'interazione debole ha una piccola componente di violazione anche della simmetria</u> <u>congiunta CP</u>, che fino ad allora sembrava invece conservare.

TEOREMA CPT

E' stato quindi dimostrato sperimentalmente l'esistenza di violazioni delle simmetrie C,P,T e delle simmetrie congiunte a due a due. Tuttavia, ponendo come ipotesi per un sistema fisico:

Località
Invarianza di Lorentz
Unitarietà

si dimostra che non si può formulare una teoria di campo quantorelativistica che preveda la violazione della simmetria CPT

Questo è il teorema CPT. Tra le sue conseguenze, <u>l'uguaglianza del valore delle masse</u>, <u>delle cariche, delle vite medie e del modulo del momento magnetico di particelle e antiparticelle</u>.

E' evidente l'importanza di una conferma sperimentale della sua validità o meno: <u>un</u> <u>fallimento sperimentale del teorema CPT comporterebbe un fallimento di una delle</u> <u>ipotesi che tuttavia sono proprietà fondamentali di qualunque modello fisico attuale.</u>

Mostreremo ora come sia possibile mettere alla prova questo teorema, perchè sia conveniente farlo nel sistema dei mesoni K neutri, e come siano stati condotti esperimenti in questo senso alla Φ-factory di Frascati (DAΦNE).

IL SISTEMA DEI MESONI K NEUTRI

Abbiamo studiato le peculiarità del sistema di mesoni $K_0(d\overline{s}) \quad \overline{K}_0(s\overline{d}) \quad m_{K^0} \approx 498 MeV$ del nonetto mesonico pseudoscalare J^P=0⁻

Autostati di CP: combinazione lineare stati $|K_0\rangle$ $|\overline{K}_0\rangle$

$$|K_0^1\rangle = \frac{1}{\sqrt{2}}(|K_0\rangle - |\overline{K}_0\rangle)$$
 CP=+1 $\longrightarrow 2\pi$, Q grande
 τ piccola
 $|K_0^2\rangle = \frac{1}{\sqrt{2}}(|K_0\rangle + |\overline{K}_0\rangle)$ CP=-1 $\longrightarrow 3\pi$, Q piccolo
 τ grande

Sperimentalmente, si trovano due stati di kaoni neutri, con vite medie molto diverse tra loro; studieremo ora come esprimerli in funzione di $|K_0\rangle |\overline{K}_0\rangle$

$$|K_0^S\rangle$$
 $\tau_s=0.9x10^{-10}s$ $|K_0^L\rangle$ $\tau_L=0.5x10^{-7}s$

APPROSSIMAZIONE WIGNER-WEISSKOPF

Il generico sistema di mesoni K può essere descritto così:

possibili prodotti di decadimento

$$|K(t)\rangle = a(t) |K_0\rangle + b(t) |\overline{K}_0\rangle + \sum_j c_j(t) |f_j\rangle$$

Nell'approssimazione di Wigner-Weisskopf → a(t) e b(t) seguono una pseudo equazione di Schroedinger

-si trascurano decadimenti instabili -si approssima i decad. a puramente esponenziali

$$i\frac{\partial}{\partial t} \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = \mathbf{H} \begin{pmatrix} a(t) \\ b(t) \end{pmatrix}$$
 con H matrice effettive

H non è una vera hamiltoniana: NON e' hermitiana. Si può scomporre in due matrici hermitiane:

$$\mathbf{H} = \mathbf{M} - \frac{i}{2} \mathbf{\Gamma} = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{22} \end{pmatrix}$$

VIOLAZIONI E ELEMENTI DI MATRICE

La conservazione di simmetrie discrete pone delle condizioni per l'hamiltoniana effettiva:

$$H_{11} = H_{22} \longrightarrow \text{conservatione CPT}$$

$$|H_{12}| = |H_{21}| \longrightarrow \text{conservatione T}$$

$$H_{11} = H_{22} \quad |H_{12}| = |H_{21}| \longrightarrow \text{conservatione CP}$$

Gli stati fisici che diagonalizzano l''hamiltoniana e i rispettivi autovalori sono:

$$|K_{S}(t)\rangle = e^{-i\lambda_{S}t} |K_{S}\rangle \qquad \lambda_{S} = m_{S} - \frac{i}{2}\Gamma_{S}$$
$$|K_{L}(t)\rangle = e^{-i\lambda_{L}t} |K_{L}\rangle \qquad \lambda_{L} = m_{L} - \frac{i}{2}\Gamma_{L}$$

Definiamo inoltre: $\Delta m = m_L - m_S > 0$ $\Delta \Gamma = \Gamma_S - \Gamma_L > 0$ $\tan(\phi_{SW}) = \frac{2\Delta m}{\Delta \Gamma}$

PARAMETRI DI VIOLAZIONE

Esprimiamo i nuovi ket nella base di $|K_0 angle$ $\left|\overline{K}_0 ight angle$

$$|K_S\rangle = N_S\{(1+\epsilon_S) | K_0\rangle + (1-\epsilon_S) | \overline{K}_0 \rangle\}$$
$$|K_L\rangle = N_L\{(1+\epsilon_L) | K_0 \rangle - (1-\epsilon_L) | \overline{K}_0 \rangle\}$$

C'è un fattore di violazione di CP come già visto, ma stavolta si ha che in generale $\epsilon_S \neq \epsilon_L$ \longrightarrow violazione CPT

E' conveniente introdurre $\overline{\epsilon} = \frac{(\epsilon_S + \epsilon_L)}{2}$ $\delta = \frac{(\epsilon_S - \epsilon_L)}{2}$

Che si possono esprimere come:

$$\overline{\epsilon} = \frac{H_{12} - H_{21}}{2(\lambda_S - \lambda_L)} \quad \delta = \frac{H_{11} - H_{22}}{2(\lambda_S - \lambda_L)} \longrightarrow 4\Re\overline{\epsilon} \approx \frac{|H_{12}|^2 - |H_{21}|^2}{|H_{12}|^2 + |H_{21}|^2}$$

$$\delta \neq 0 \qquad \Re\overline{\epsilon} \neq 0 \qquad \Re\overline{\epsilon} \neq 0 \quad \text{oppure} \quad \delta \neq 0$$
violazione violazione violazione CPT T CP

STATI J^{PC} IN UNA Φ-FACTORY

A Da Φ ne i mesoni sono prodotti nella reazione e⁺e⁻ $\rightarrow \Phi \rightarrow K\overline{K}$ Φ ha J^{PC}=1⁻ \rightarrow stessi numeri quantici per stati prodotti (int forte) Possono essere prodotti solo stati S=0:

$$K_0(+\overrightarrow{p})\rangle \left| \overline{K}_0(-\overrightarrow{p}) \right\rangle \qquad \left| \overline{K}_0(+\overrightarrow{p}) \right\rangle \left| K_0(-\overrightarrow{p}) \right\rangle$$

Mesoni K: bosoni spin $0 \rightarrow$ stati fisici K \overline{K} <u>devono</u> essere simmetrici sotto CP. Autovalori C sono $(-1)^L$, da Φ L=1 \rightarrow gli stati prodotti sono combinazioni antisimmetriche: $\frac{1}{\sqrt{2}}(|K_0(+\overrightarrow{p})\rangle |\overline{K}_0(-\overrightarrow{p})\rangle - |\overline{K}_0(+\overrightarrow{p})\rangle |K_0(-\overrightarrow{p})\rangle)$ $= \frac{N}{\sqrt{2}}(|K_S(+\overrightarrow{p})\rangle |K_L(-\overrightarrow{p})\rangle - |K_L(+\overrightarrow{p})\rangle |K_S(-\overrightarrow{p})\rangle)$ $N = N_{\epsilon_S \epsilon_L} \approx 1$

Al contrario di stati con L pari, qui i K non compaiono mai in combinazioni $K_s K_s$ o $K_L K_L$, ma solo $K_s K_L$ —fascio K_s puro

DECADIMENTI SEMILEPTONICI

Con KLOE si sono studiati i decadimenti del tipo $K_s \rightarrow \pi e v$ Parametrizziamo questi decadimenti per evidenziare le violazioni CPT:

 $\left\langle \pi^{-}l^{+}\nu|T|K^{0}\right\rangle = a+b \qquad \left\langle \pi^{+}l^{-}\overline{\nu}|T|\overline{K}^{0}\right\rangle = a^{*}-b^{*}$ $\left\langle \pi^{+}l^{-}\overline{\nu}|T|K^{0}\right\rangle = c+d \qquad \left\langle \pi^{-}l^{+}\nu|T|\overline{K}^{0}\right\rangle = c^{*}-d^{*}$

Invarianza CPT \rightarrow b=d=0 Δ S= Δ Q \rightarrow c=d=0 Invarianza T \rightarrow Im(a)=Im(b)=Im(c)=Im(d)=0 Invarianza CP \rightarrow Im(a)=Re(b)=Im(c)=Re(d)=0

Per le misure si definiscono dei parametri di violazione relativa, indipendenti da una fase convenzionale:

 $x_{+} = \frac{c^{*}}{a}$ $x_{-} = -\frac{d^{*}}{a}$ $y = -\frac{b}{a}$ violazioni $\Delta S = \Delta Q$ violazioni $\Delta S = \Delta Q$ violazioni CPT in con cons. CPT con violaz. CPT transiz $\Delta S = \Delta Q$

ASIMMETRIE DEI DECADIMENTI

Si possono introdurre delle asimmetrie nei decadimenti carichi semileptonici dei mesoni K

$$A_{S} = \frac{\Gamma(K_{S} \to \pi^{-}l^{+}\nu) - \Gamma(K_{S} \to \pi^{+}l^{-}\overline{\nu})}{\Gamma(K_{S} \to \pi^{-}l^{+}\nu) + \Gamma(K_{S} \to \pi^{+}l^{-}\overline{\nu})} = 2\Re\overline{\epsilon} + 2\Re\delta - 2\Re y + 2\Re x_{-}$$
$$A_{L} = \frac{\Gamma(K_{L} \to \pi^{-}l^{+}\nu) - \Gamma(K_{L} \to \pi^{+}l^{-}\overline{\nu})}{\Gamma(K_{L} \to \pi^{-}l^{+}\nu) + \Gamma(K_{L} \to \pi^{+}l^{-}\overline{\nu})} = 2\Re\overline{\epsilon} - 2\Re\delta - 2\Re y - 2\Re x_{-}$$

Che collegano i parametri di violazione da misurare con quantità sperimentalmente misurabili

Dati due prodotti $\mathbf{f}_1 \mathbf{f}_2$ dei decadimenti dei due mesoni a tempi \mathbf{t}_1 \mathbf{t}_2 , con $\Delta \mathbf{t} = \mathbf{t}_1 - \mathbf{t}_2$, e I($\mathbf{f}_1, \mathbf{f}_2, \Delta \mathbf{t}$) intensità del decadimento, definisco $A_{CPT}(|\Delta t|) = \frac{I(\pi^{-}l^{+}\nu, \pi^{+}l^{-}\overline{\nu}; \Delta t > 0) - I(\pi^{-}l^{+}\nu, \pi^{+}l^{-}\overline{\nu}; \Delta t < 0)}{I(\pi^{-}l^{+}\nu, \pi^{+}l^{-}\overline{\nu}; \Delta t > 0) + I(\pi^{-}l^{+}\nu, \pi^{+}l^{-}\overline{\nu}; \Delta t < 0)}$

E' sensibile a violazioni CPT e/o $\Delta S = \Delta Q$ per $|\Delta t| >> \tau_s \rightarrow Re(\delta) + Re(x_); per |\Delta t| \le 5\tau_s \rightarrow Im(\delta) + Im(x_+)$

RELAZIONE DI BELL-STEINBERGER

Nell'ipotesi di unitarietà, si può introdurre la seguente relazione:

$$\frac{\Gamma_S + \Gamma_L}{\Gamma_S - \Gamma_L} + i \tan \phi_{SW} \left[\frac{\Re \overline{\epsilon}}{1 + |\overline{\epsilon}|^2} - i \Im \delta \right] = \frac{1}{\Gamma_S - \Gamma_L} \sum_f A^* (K_S \to f) A(K_L \to f) \equiv \sum_f \alpha_f$$

I parametri α_{f} così definiti sono collegati a grandezze misurabili, i BR di tutti i decadimenti possibili, vite medie di $K_{s} e K_{L} e$ parametri di asimmetria.

Con questa relazione, si possono trovare Re($\overline{\epsilon}$) e Im(δ) con misure sperimentali

KLOE DETECTOR

2001-05 $\int L = 2.5 \text{ fb}^{-1} \rightarrow 7.5 \times 10^9 \Phi \rightarrow 2.5 \times 10^9 \text{ coppie } \text{K}_{\text{s}} \text{K}_{\text{r}}$

K TAGGING

K neutri, come visto, prodotti sempre in coppia K_LK_S Vengono prodotti back to back, quindi rivelare un K_L identifica un K_S, direzione e momento

K_s selezionato da "crash" K_L nel calorimetro

 K_L selezionato dal vertice $K_S \rightarrow \pi^+ \pi$

Si seleziona un fascio di K_s puri

CRITERI DI SELEZIONE

Il K_s è identificato da un "crash" K₁ nel calorimetro Circa il 50% dei K, prodotti in $\Phi \rightarrow K^0 K^0$ raggiunge il calorimetro K₁ crash → deposito E>200 MeV **determino p**₁ TOF corrisp. a $\beta \approx 0,216$ Così sono identificati sia $K_s \rightarrow \pi^+ \pi^-$ sia $K_s \rightarrow \pi ev$ 2 tracce curvatura opposta $K_{c} \rightarrow \pi^{+}\pi^{-}$ $\mathbf{p}_{\mathbf{S}} = \mathbf{p}_{\mathbf{\Phi}} - \mathbf{p}_{\mathbf{L}}$ tracce estrapolate fino a pochi cm da IP 120 MeV<p<300 MeV, 30°<θ<150° Montecarlo \rightarrow contaminazione ordine del per mille $K_{s} \rightarrow \pi ev$ 2 tracce curvatura opposta Tracce e π tracce estrapolate e formano vertice discriminate da vicino a IP TOF→trovo β M tracce supponendole $\pi < 490$ MeV

TOF

Le tracce vengono associate al corrispondente cluster del calorimetro

Per ogni traccia si calcola $\delta_t(m) = t_{cl} - L/c\beta(m)$ Per il β si fa sia l'ipotesiIunghezza traccia $m=m_e$ sia l'ipotesi $m=m_{\pi}$ tempo di arrivo al cluster

Si introduce poi una differenza tra le due tracce, che è nulla per la $d\delta_{t,ab} = \delta_t(m_a)_1 - \delta_t(m_b)_2$ giusta attribuzione delle masse

Gli eventi K_s $\rightarrow \pi^+\pi^-$ sono rigettati richiedendo $|d\delta_{t,\pi\pi}| > 1.7ns$

Poi si calcolano le d $\delta_{t,\pi e}$ e le d $\delta_{t,e\pi}$ per gli eventi rimasti e si applicano:

$$\begin{aligned} |d\delta_{t,\pi e}| < 1.4ns & |d\delta_{t,e\pi}| < 1.4ns \\ d\delta_{t,e\pi} > 3.2ns & d\delta_{t,\pi e} > 3.2ns \end{aligned}$$

Qui si è arrivati a rigettare il 90% del background, e a un'efficienza dell'85% sugli eventi

TOF E GRAFICI

ENERGIA MANCANTE

Si usa come variabile discriminante $\Delta E_{\pi e} = E_{miss} - p_{miss}$ Nei decadimenti $\mathbf{K}_{s} \rightarrow \pi \text{ev}$ energia e momento mancante sono quelli del neutrino, e ΔE_{miss} deve essere distribuita intorno a zero. Il fondo residuo è dominato da eventi $\mathbf{K}_{s} \rightarrow \pi^{+}\pi^{-}\gamma$, ma ci sono anche eventi in cui un pione decade in un muone prima di entrare nella zona tracciante (eventi $\pi\mu$) o in cui una traccia è mal ricostruita ($\pi\pi_{had}$)

VARIABILI CINEMATICHE DI DISCRIMINAZIONE

Si usano 5 variabili cinematiche per discriminare il background $\Delta E_{\pi e}$

- d_{CPA} : differenza parametro impatto delle due tracce con IP. Il background, tranne eventi $\pi\pi\gamma$, ha distribuzione piatta. $\pi\pi\gamma$ e segnale sono piccati a zero (buona ricostruzione vertice).
- $M_{trk}^2(e)$: massa quadra di una traccia identificata come elettrone da TOF. Permette di discriminare eventi $\pi\mu$, che piccano a m²
- $\Delta E_{\pi\pi}$: analogo a $\Delta E_{\pi e}$ ma nell'ipotesi $\pi\pi$. Permette di discriminare eventi $\pi\pi\gamma$, che piccano intorno a zero.

 - $E^*_{\pi(e)}$: energia della traccia identificata come un $\pi(e)$ dal TOF, calcolata nel sistema di riposo K_s usando come ipotesi la massa del pione. Identifica eventi $K_s \rightarrow \pi^+ \pi^-$, piccano attorno a $m_{_{\rm K}}/2$, discrimina eventi con tracce mal ricostruite.

GRAFICI

ρίς ο πμ

Zona di fit divisa in cinque parti, ognuna con una variabile cinematica di fit.

La funzione di fit è la MC per il segnale sommata con quella per il background. I parametri liberi sono la normalizzazione reciproca tra

segnale e fondo. Tener conto in MC dei $K_s \rightarrow \pi^+ \pi^-$, πev con radiazione fotonica negli stati finali migliora di alcuni punti percentuali il risultato per il BR.

RISULTATI SPERIMENTALI

$$R_{e+} = \frac{\Gamma(K_S \to \pi^- e^+ \nu)}{\Gamma(K_S \to \pi^- \pi^+)} = (5,099 \pm 0,082_{stat} \pm 0,039_{syst}) \times 10^{-4}$$

NORMALIZZAZIONE
$$R_{e-} = \frac{\Gamma(K_S \to \pi^+ e^- \overline{\nu})}{\Gamma(K_S \to \pi^- \pi^+)} = (5,083 \pm 0,073_{stat} \pm 0,042_{syst}) \times 10^{-4}$$

Kedeev Selection efficiency

n _S decay	Selection emciency	
	Year 2001	Year 2002
$\pi^+\pi^-$	$0.5954 \pm 0.0004_{\rm stat} \pm 0.0010_{\rm syst}$	$0.6035 \pm 0.0004_{\rm stat} \pm 0.0010_{\rm syst}$
$\pi^- e^+ \nu$	$0.2139 \pm 0.0019_{\rm stat} \pm 0.0014_{\rm syst}$	$0.2197 \pm 0.0012_{\rm stat} \pm 0.0021_{\rm syst}$
$\pi^+ e^- \bar{\nu}$	$0.2252 \pm 0.0016_{\rm stat} \pm 0.0009_{\rm syst}$	$0.2328 \pm 0.0011_{\rm stat} \pm 0.0011_{\rm syst}$

$$A_{s} = (1,5 \pm 9,6_{stat} \pm 2,9_{syst}) \times 10^{-3}$$

ALTRI ESPERIMENTI (KTeV, CPLEAR...)

 $A_{S} - A_{L} = 4(\Re\delta + \Re x_{-})$ $A_{S} + A_{L} = 4(\Re\epsilon - \Re y)$

KLOE

Re (x_)=(-0,8 ±2,4_{stat} ±0,7_{syst})x10⁻³ Δ S= Δ Q, CPT viol. Re (y) =(0,4 ±2,4_{stat} ±0,7_{syst})x10⁻³ CPT viol.

INPUT SPERIMENTALI BELL-STEINBERGER

	Value	Source
τ_{K_S}	$0.08958 \pm 0.00005~\rm{ns}$	PDG [14]
$ au_{K_L}$	$50.84 \pm 0.23 \text{ ns}$	KLOE average
$m_L - m_S$	$(5.290 \pm 0.016) \times 10^9 \text{ s}^{-1}$	PDG [14]
$BR(K_S \rightarrow \pi^+ \pi^-)$	0.69186 ± 0.00051	KLOE average
$BR(K_S \rightarrow \pi^0 \pi^0)$	0.30687 ± 0.00051	KLOE average
 $\blacktriangleright \text{BR}(K_S \to \pi \ell \nu)$	$(11.77 \pm 0.15) \times 10^{-4}$	KLOE [6]
$BR(K_L \rightarrow \pi^+ \pi^-)$	$(1.933 \pm 0.021) \times 10^{-3}$	KLOE average
$BR(K_L \rightarrow \pi^0 \pi^0)$	$(0.848 \pm 0.010) \times 10^{-3}$	KLOE average
ϕ_{+-}	$(43.4 \pm 0.7)^{\circ}$	PDG [14]
ϕ_{00}	$(43.7 \pm 0.8)^{\circ}$	PDG [14]
$R_{S,\gamma} (E_{\gamma} > 20 \text{MeV})$	$(0.710 \pm 0.016) \times 10^{-2}$	E731 [18]
$R_{S,\gamma}^{\text{th-IB}}$ ($E_{\gamma} > 20 \text{MeV}$)	$(0.700 \pm 0.001) \times 10^{-2}$	KLOE MC [19]
$ \eta_{+-\gamma} $	$(2.359 \pm 0.074) \times 10^{-3}$	E773 [17]
$\phi_{+-\gamma}$	$(43.8 \pm 4.0)^{\circ}$	E773 [17]
$BR(K_L \rightarrow \pi^+ \pi^- \pi^0)$	0.1262 ± 0.0011	KLOE average
η_{+-0}	$((-2\pm7)+i(-2\pm9))\times10^{-3}$	CPLEAR [10]
$BR(K_L \rightarrow 3\pi^0)$	0.1996 ± 0.0021	KLOE average
 $\blacktriangleright \text{BR}(K_S \rightarrow 3\pi^0)$	$< 1.5 \times 10^{-7}$ at 95% CL	KLOE [5]
ϕ_{000}	uniform from 0 to 2π	
 $\blacktriangleright \text{BR}(K_L \to \pi \ell \nu)$	0.6709 ± 0.0017	KLOE average
 $ A_L + A_S $	$(0.5 \pm 1.0) \times 10^{-2}$	$K_{\ell 3}$ average
 \blacktriangleright Im (x_+)	$(0.8 \pm 0.7) \times 10^{-2}$	$K_{\ell 3}$ average

RISULTATI SPERIMENTALI BELL-STEINBERGER

Re $(\overline{\epsilon}) = (159, 6\pm 1, 3) \times 10^{-5}$ Im $(\delta) = (0, 4\pm 2, 1) \times 10^{-5}$

violazione CP

violazione CPT

MISURA VIOLAZIONE CPT COMPATIBILE CON ZERO

KLOE

da
$$\delta = \frac{1}{2} \frac{(m_{\overline{K}_0} - m_{K_0}) - (i/2)(\Gamma_{\overline{K}_0} - \Gamma_{K_0})}{\Delta m + i\Delta\Gamma/2}$$

Assumendo $\Gamma_{\overline{K}^0} - \Gamma_{K^0} = 0$ si ha (95% CL)

$$-5,3 \times 10^{-19} < (m_{\overline{K}^0} - m_{K^0}) < 6.3 \times 10^{-19} GeV$$

cioè
$$\frac{m_{K^0} - m_{\overline{K}^0}}{m_K} < 10^{-18}$$

 $\frac{m_p - m_{\overline{p}}}{2} < 10^{-8}$ $\frac{m_{B^0} - m_{\overline{B}^0}}{\overline{B}^0} < 10^{-14}$ in confronto $m_{\mathcal{D}}$ m_B

REFERENZE

Neutral Kaon Interferometry at a Φ-factory A. Di Domenico http://www.roma1.infn.it/people/didomenico/roadmap/handbook.html

CP and CPT violation in neutral kaon decays Luciano Maiani (Rome U. & INFN, Rome & CERN) . LNF-92-043-P, May 1992

Study of the branching ratio and charge asymmetry for the decay $K_s \rightarrow \pi ev$ with the KLOE detector

Physics Letters B, Volume 636, Issues 3-4, 11 May 2006, Pages 173-182 www.sciencedirect.com

Experimental tests of CPT symmetry and quantum mechanics in the neutral kaon system

A. Di Domenico

Seminar at LPHE - Ecole Polytechnique Federal de Lausanne, Feb. 15th, 2008; http://lphe.epfl.ch/seminar/ext_semin-en.php

BACKUP SLIDES

TEOREMA CPT

 Spazio-tempo 4-dimensionale
 riflessione assi = rotazione

 rotazione
 cambio segno tutte

 componenti 4-vettore

quadricorrente
$$j_{\mu} = (\rho, \vec{j}) \xrightarrow{\mathbf{P}} (\rho, -\vec{j}) \xrightarrow{\mathbf{T}} (\rho, \vec{j})$$

sotto C cambiano segno tutte componenti $j_{\mu} \xrightarrow{\mathbf{CPT}} -\vec{j}_{\mu}$
rotazione \longrightarrow cambio segno tutte
componenti 4 -vettore
assiale $a_{\mu} = (a_0, \vec{a}) \xrightarrow{\mathbf{C}} (a_0, \vec{a}) \xrightarrow{\mathbf{P}} (-a_0, \vec{a}) \xrightarrow{\mathbf{T}} (-a_0, -\vec{a})$

Nel nostro spazio-tempo euclideo, CPT=riflessione dei 4 assi

V

CONSEGUENZE TEOREMA CPT

massa particella = valore aspettazione hamiltoniana in stato di quiete con una certa proiezione dello spin

$$m = \langle s_z | H | s_z \rangle$$

sotto CPT
$$|s_z\rangle \rightarrow \langle \overline{-s_z}| \qquad \langle s_z| \rightarrow |\overline{-s_z}\rangle$$

PARTICELLA — ANTIPARTICELLA

invarianza rotazioni: la massa non può dipendere dalla proiezione dello spin

 $\mathbf{m} = \mathbf{m}$

H EFFETTIVA E SIMMETRIE

$$\begin{array}{ccc} \mathbf{CP} & |K^0 \left\rangle \rightarrow |\overline{K^0} \right\rangle & |\overline{K^0} \right\rangle \rightarrow |K^0 \rangle & \mathbf{T} \rightarrow \begin{array}{c} \begin{array}{c} \text{complesso} \\ \text{coniugato} \end{array} \\ \mathbf{CP} & M \rightarrow \tau_1 M \tau_1 & \mathbf{T} & M \rightarrow M^* \\ \Gamma \rightarrow \tau_1 \Gamma \tau_1 & \Gamma & \Gamma \end{array} \\ \begin{array}{c} \text{sviluppando in termini} \\ \text{delle matrici di Pauli} \end{array} & M = c_0 1 + c_1 \tau_1 + c_2 \tau_2 + c_3 \tau_3 \\ \Gamma = c_0' 1 + c_1' \tau_1 + c_2' \tau_2 + c_3' \tau_3 \\ \Gamma = c_0' 1 + c_1' \tau_1 + c_2' \tau_2 + c_3' \tau_3 \end{array} \\ \begin{array}{c} \text{sotto CPT} \\ \text{sotto CPT} \\ H = (c_0 - \frac{i}{2}c_0') 1 + (c_1 - \frac{i}{2}c_1') \tau_1 + (c_2 - \frac{i}{2}c_2') \tau_2 \pm (c_3 - \frac{i}{2}c_3') \tau_3 \end{array} \end{array}$$

per l'invarianza CPT H₁₁=H₂₂

STATI SIMMETRICI E ANTISIMMETRICI

Momento angolare pari

$$\frac{1}{\sqrt{2}}(|K_0(+\overrightarrow{p})\rangle |\overline{K}_0(-\overrightarrow{p})\rangle + |\overline{K}_0(+\overrightarrow{p})\rangle |K_0(-\overrightarrow{p})\rangle)$$

$$= \frac{1}{\sqrt{2}}(|K_S(+\overrightarrow{p})\rangle |\overline{K}_S(-\overrightarrow{p})\rangle - |\overline{K}_L(+\overrightarrow{p})\rangle |K_L(-\overrightarrow{p})\rangle$$

$$-2\delta[|\overline{K}_S(+\overrightarrow{p})\rangle |\overline{K}_L(-\overrightarrow{p})\rangle + |\overline{K}_L(+\overrightarrow{p})\rangle |\overline{K}_S(-\overrightarrow{p})\rangle])$$

Momento angolare dispari

$$\frac{1}{\sqrt{2}} (|K_0(+\overrightarrow{p})\rangle | \overline{K}_0(-\overrightarrow{p})\rangle - |\overline{K}_0(+\overrightarrow{p})\rangle | K_0(-\overrightarrow{p})\rangle)$$
$$= \frac{N}{\sqrt{2}} (|K_S(+\overrightarrow{p})\rangle | \overline{K}_L(-\overrightarrow{p})\rangle - |\overline{K}_L(+\overrightarrow{p})\rangle | K_S(-\overrightarrow{p})\rangle)$$

ASIMMETRIE DI DECADIMENTO

 $A(f_1, t_1; f_2, t_2) = \frac{N}{\sqrt{2}} \{ \langle f_1 | T | K_S(t_1) \rangle \langle f_2 | T | K_L(t_2) \rangle - \langle f_1 | T | K_L(t_1) \rangle \langle f_2 | T | K_S(t_2) \rangle \}$ $= \frac{N}{\sqrt{2}} \left\{ \left\langle f_1 | T | K_S \right\rangle \left\langle f_2 | T | K_L \right\rangle e^{-i\lambda_S t_1} e^{-i\lambda_L t_2} - \left\langle f_1 | T | K_L \right\rangle \left\langle f_2 | T | K_S \right\rangle e^{-i\lambda_L t_1} e^{-i\lambda_S t_2} \right\} \right\}$ $I(f_1, t_1; f_2, t_2) = C_{12} \{ |\eta_1|^2 e^{-\Gamma_L t_1 - \Gamma_S t_2} + |\eta_2|^2 e^{-\Gamma_S t_1 - \Gamma_L t_2} \}$ $-2|\eta_1||\eta_2|e^{\frac{-(\Gamma_S+\Gamma_L)}{2}(t_1+t_2)}\cos(\Delta m(t_1-t_2)+\phi_2-\phi_1)\}$ $\eta_i \equiv |\eta_i e^{i\phi_i} = \frac{\langle f_i | T | K_L \rangle}{\langle f_i | T | K_S \rangle}$ $C_{12} = \frac{|N|^2}{2} |\langle f_1 | T | K_S \rangle \langle f_2 | T | K_S \rangle |^2$ **integrando** in $t_1 + t_2$, a Δt fissato $I(f_1, f_2; \Delta t \ge 0) = \frac{C_{12}}{\Gamma_S + \Gamma_L} \{ |\eta_1|^2 e^{-\Gamma_L \Delta t} + |\eta_2|^2 e^{-\Gamma_S \Delta t} - 2|\eta_1| |\eta_2| e^{\frac{-(\Gamma_S + \Gamma_L)}{2} \Delta t} \cos(\Delta m \Delta t + \phi_2 - \phi_1) \}$ $\Delta t < 0 \Rightarrow \Delta t \rightarrow |\Delta t|, 1 \leftrightarrow 2$

si possono allora definire asimmetrie come la A_{CPT} che abbiamo introdotto $A(|\Delta t|) = \frac{I(f_1, f_2; \Delta t > 0) - I(f_1, f_2; \Delta t < 0)}{I(f_1, f_2; \Delta t > 0) + I(f_1, f_2; \Delta t < 0)}$