Evidenza di uno stato legato esotico contenente coppie di quark charm-anticharm con l'esperimento BaBar

Esame di Fisica Nucleare e Subnucleare 2

professore: Riccardo Faccini studente: Carlo Mancini

and G Nelvana, All Rights Reserved

- Cos'è uno charmonío?
- Il rívelatore BaBar e in particolare come sí rívela il passaggio di muoni
- Come vengono ricostruiti i decadiemnti
- La X(3872), perché non è uno stato dí charmonío e perché è "esotica"
- □ Come sí rívela la X(3872)

I I Charmonio

- \Box Lo charmonío è uno stato legato $c\bar{c}$
- La J/Ψ è stato il primo stato dello charmonio scoperto
- Pochí gíorní dopo la sua scoperta a
 SLAC sí trovò un'altra rísonanza: la
 Ψ(2S)
- Glí statí legatí con quark pesantí sono un ottimo strumento per studiare l'interazione forte

Lo spettro dello Charmonio

Tuttí glí statí predettí sotto la soglía dí produzíone del charm aperto (cíoè d $D\overline{D}$, dato che D è íl mesone con charm píù leggero) sono statí osservatí.

Lo spettro dello Charmonio

Tuttí glí statí predettí sotto la soglía dí produzíone del charm aperto (cíoè d $D\bar{D}$, dato che D è íl mesone con charm píù leggero) sono statí osservatí.

 $J_{\text{Dove:}}^{PC}$ J = momento angolare totale $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ C = autostato di c = autostato di carica

Lo spettro dell

Sí ídentífica íl momento angolare dí ogní stato allo stesso modo della spettroscopía atomíca

sotto la soglia di produzione del charm aperto (cioè d $D\overline{D}$, dato che D è il mesone con charm più leggero) sono stati osservati.

 $J_{\text{Dove:}}^{PC}$ J = momento angolare totale $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ C = autostato di c = autostato di carica

BaBar

- BaBar è un esperimento general purpose realizzato alla B Factory PEP-II ed è ottimizzato per la ricerca di decadimenti rari del mesone B
- La B Factory PEP-II è un collider e⁺e⁻ che opera ad una energía del cm dí 10.58 GeV, valore della massa della rísonanza Y(4S), e ha una lumínosítà dí almeno 3 x 10³³cm⁻²s⁻¹
- PEP-II è una macchina asimmetrica:
 9.0 GeV per gli elettroni, 3.1 GeV per i positroni

 un rílevatore dí vertíce al sílício (SVT), che serve a mísurare con pracísione le tracce vícino all'orígine

- un rílevatore dí vertíce al sílício (SVT), che serve a mísurare con pracísione le tracce vícino all'orígine
- 2. una camera centrale a deríva (DCH) a Ioduro dí Cesío, per mísurare le tracce delle partícelle caríche

- un rílevatore dí vertíce al sílício (SVT), che serve a mísurare con pracísione le tracce vícino all'orígine
- 2. una camera centrale a deríva (DCH) a Ioduro dí Cesío, per mísurare le tracce delle partícelle caríche
- 3. un rílevatore Cerenkov, a barre dí quarzo (DIRC), per mísurare la massa delle partícelle caríche

- un rílevatore dí vertíce al sílício (SVT), che serve a mísurare con pracísione le tracce vícino all'origine
- 2. una camera centrale a deríva (DCH) a Ioduro dí Cesío, per mísurare le tracce delle partícelle caríche
- 3. un rílevatore Cerenkov, a barre dí quarzo (DIRC), per mísurare la massa delle partícelle caríche

4. un calorímetro elettromagnetico (EMC), per l'identificazione di fotoni ed elettroni

- un rílevatore dí vertíce al sílício (SVT), che serve a mísurare con pracísione le tracce vícino all'orígine
- 2. una camera centrale a deríva (DCH) a Ioduro dí Cesío, per mísurare le tracce delle partícelle caríche
- 3. un rílevatore Cerenkov, a barre dí quarzo (DIRC), per mísurare la massa delle partícelle caríche

- 4. un calorímetro elettromagnetico (EMC), per l'identificazione di fotoni ed elettroni
- 5. un solenoíde superconduttore da 1.5T

- un rílevatore dí vertíce al sílício (SVT), che serve a mísurare con pracísione le tracce vícino all'orígine
- 2. una camera centrale a deríva (DCH) a Ioduro dí Cesío, per mísurare le tracce delle partícelle caríche
- 3. un rílevatore Cerenkov, a barre dí quarzo (DIRC), per mísurare la massa delle partícelle caríche

- 4. un calorímetro elettromagnetico (EMC), per l'identificazione di fotoni ed elettroni
- 5. un solenoíde superconduttore da 1.5T
- 6. L'IFR, realizzato all'interno del ferro per il ritorno del campo magnetico, serve principalmente ad identificare i μ

- L'IFR consiste di 19 piani Resistive Plate Chambers nella regione del barrel e 18 piani nella regione anteriore e posteriore.
- I píaní RPC sono alternatí con le píastre dí ferro che chíndono íl rítorno del campo magnetíco

Le Resistive Plate Chambers

Le RPC sono costítuíte dí due píaní parallelí con grande resístívítà (~10⁹-10¹³Ω/cm) mantenutí ad una grande dífferenza dí potenzíale (~7-12 kV).

- Nell'interstizio fra i due è inserito un gas a pressione atmosferica
 - uno strato dí grafite aderente alle facce esterne della bakelite serve a mantenere la dífferenza dí potenzíale

Le Resistive Plate Chambers

- Il passaggio di una particella carica da luogo ad una valanga di elettroni e fotoni le cui dimensioni e durata sono limitate dalla riduzione locale del campo elettrico che la cascata stessa produce
- La lettura del segnale avviene misurando la carica indotta su delle strip poste (su entrambe le facce) dietro un materiale che le isola dalla grafite
- la ricostruzione bidimensionale è realizzata posizionando le strip ortogonali fra loro

Come si identificano i µ

- I µ perdono energía solo per ionizzazione
- □ sono MIP

F

- passano tuttí í rílevatori interní e il ferro dell'IFR
- Iπ, ínvece hanno una probabilità di interagire forte nel ferro dell'IFR e produrre uno sciame adronico
 - è possíbile che un π venga scambiato per un μ e riesce ad attraversare tutti gli strati di ferro (punchthrough), quindi se gli ultimi layer sono inefficienti la probabilità di sbagliare aumenta sensibilmente
 - Un m non viene identificato invece se la sua energia non è sufficiente ad attraversare il ferro o addirittura potrebbe rimanere intrappolato nel campo magnetico senza arrivare all'IFR

La capacità di rigetto dei π

In questo grafico è riportata la capacità di distinguere un π in funzione dell'efficienza di rivelare un μ

- Le traiettorie delle particelle cariche sono misurate combinando le misure del rilevatore di vertice al silicio e della camera a deriva
- le informazioni sono poi combinate con quelle del rilevatore Cerenkov
- fotoní ed elettroní sono rívelatí nel calorímetro elettromagnetico
- i muoní penetrantí sono identificati dall'IFR

Come vengono ricostruiti i decadimenti?

- La massa invariante di elettroni, positroni e fotoni bremsstrahlung deve essere compresa fra 2.95 e 3.14 Gev/c²
- se ínvece í leptoní prodottí sono una coppía dí μ sí chíede che la massa sía compresa fra 3.06 e 3.14 Gev/c²
- Nel fare íl fít è ímposto un mass
 costraínt parí alla massa della J/ψ
 alla coppía dí leptoní

Come vengono ric decadimenti?

- La massa invariante di elettro positroni e fotoni bremsstrahlung deve essere compresa fra 2.95 e 3.14 Gev/c²
- se ínvece í leptoní prodottí sono una coppía dí μ sí chíede che la massa sía compresa fra 3.06 e 3.14 Gev/c²
- Nel fare íl fít è ímposto un mass
 costraínt parí alla massa della J/ψ
 alla coppía dí leptoní

vengono mísuratí 400 300 200 100 3.1 3.2 m_{e-e+} (GeV/c 2.7 2.8 2.9 MeV/c² 900 800 ter brem. recov. 700 600 before 500 400 300 200 100 0 2.5 2.6 2.7 2.8 2.9 3 $m_{\mu-\mu+}$ (GeV/c²

Perché non

tuttí í fotoní

bremsstrahlung

Come vengono ricostruiti i decadimenti?

Nella ricostruzione del decadimento della J/Y in e⁺e⁻ viene corretto il quadrimpulso con un algoritmo che aggiunge il quadrimpulso di fotoni consistenti con l'essere stati emessi tangenti alla traiettoria dell'elettrone

Π

Come è stata scoperta la X(3872)?

- Studiando lo spettro dí massa invariante del sístema $J/\psi \pi \pi$ nel decadimento $B^{\pm} \rightarrow J/\psi \ K^{\pm} \pi^{+} \pi^{-}$
- è stata vísta una rísonanza a 3.9 GeV dífficilmente ríconducibile alle particelle note

Come è stata scoperta la X(3872)?

- Studiando lo spettro dí massa invariante del sístema $J/\psi \pi \pi$ nel decadimento $B^{\pm} \rightarrow J/\psi \ K^{\pm} \pi^{+} \pi^{-}$
- è stata vísta una rísonanza a 3.9 GeV dífficilmente ríconducíbile alle partícelle note

Come si identificano i segnali?

Per meglio identificare i segnali vengono introdotte due quantità:

 $\Delta E \equiv E_B - \sqrt{s/2} \qquad m_{ES} \equiv \sqrt{s/2 + \vec{p}_B^2}$

- ΔE serve a díscrímínare glí eventí ímponendola círca uguale a 0
- m_{ES} è il modulo quadro del quadrimpulso della B imponendo che abbia una energia uguale a quella del sistema nel centro di massa di e⁺e⁻
- $\square \quad m_{ES} e \Delta E \underline{sono \ scorrelate}$

La m_{es} nella regione della X

sí fa un taglío
 sulla m_{ES}
 íntorno al
 valore della X

- La X(3872) è il primo stato che è stato scoperto non facilmente riconducibile allo spettro dello charmonio
- Ha una massa appena al dí sopra della soglía dí produzíone del charm aperto
- è stato osservato per la prima volta da Belle, confermato da BaBar e studiato in dettaglio anche da CDF
- D è stato osservato decadere ín: $J/\psi \pi^+\pi^- J/\psi \gamma D^0 D^{*0} J/\psi \pi^+\pi^-\pi^0$

- \Box La X deve avere C=+1 poiché è stato osservato il decadimento in $J/\psi \gamma$
- La collaborazione CDF, con uno studio angolare del decadimento $X \rightarrow J/\psi \pi \pi$ ha concluso che gli unici stati consistenti con i dati sono: $J^{PC} = 2^{-+}$, 1^{++}
- \Box Lo spettro dí massa invariante dí π + π indica un decadimento in J/ ψ p

è la Ψ(3836)?

Sarebbe plansíbíle
 ídentíficarlo come uno stato
 ¹D₂ dello charmonío, la
 Ψ(3836)

è la $\Psi(3836)$?

- Sarebbe plansíbíle
 ídentíficarlo come uno stato
 ¹D₂ dello charmonío, la
 Ψ(3836)
- ma íl decadímento
 Ψ(3836)→ J/ψ ρ víolerebbe
 l'ísospín

è la $\Psi(3836)$?

- Sarebbe plansíbíle
 ídentíficarlo come uno stato
 ¹D₂ dello charmonío, la
 Ψ(3836)
- ma íl decadímento
 Ψ(3836)→ J/ψ ρ víolerebbe
 l'ísospín
- Essendo sopra la soglía dí charm aperto íl canale dí decadímento J/ψ ρ dovrebbe essere soppresso dí círca 4 ordíní dí grandezza ríspetto a DD

è la Ψ(3836)? No!

- Sarebbe plansíbíle
 ídentíficarlo come uno stato
 ¹D₂ dello charmonío, la
 Ψ(3836)
- ma íl decadímento
 Ψ(3836)→ J/ψ ρ víolerebbe
 l'ísospín

Π

Essendo sopra la soglía dí charm aperto íl canale dí decadímento $J/\psi \rho$ dovrebbe essere soppresso dí círca 4 ordíní dí grandezza ríspetto a $D\overline{D}$

Particella esotica?

- Sono state formulate molte ípotesí sulla natura della X(3872), le píù accreditate sono:
 - che sí trattí dí una partícella formata da 4 quark
 - che sí trattí dí una "molecola"

tetraquark

- L'ipotesi è che si tratti di una particella formata da due quark e due antiquark
- \Box dovrebbero esístere due statí: $X_u = [cu][\bar{c}\bar{u}] eX_d = [cd][\bar{c}\bar{d}]$
- \Box la differenza di massa dovrebbe essere 7+/-2 MeV/c²
- cí potrebbe essere míxing fra í due stati

Molecola

non stretto = brutta traduzione di loosely

- Questa ípotesí ínquadra la X(3872) come uno stato legato largo $D^0 \overline{D}^{*0}$
- \Box Sarebbe uno stato S con $J^{P}=I^{+}$

Due stati?

Mísurando la massa della X nei due canali di decadímento $X \rightarrow //\psi \rho$ e $X \rightarrow D^{*0} D^0$ sí è mísurata una dífferenza dí 4 deviazioni standard, cosa che farebbe pensare che esístano due statí díversí e farebbe tendere per l'ipotesi 4 quark

Π

Per il futuro?

Per veríficare le ípotesí del 4quark sí procederà alla rícerca dí un partner caríco della X(3872)

Oltre a ríempíre glí spazí ancora vuotí dí questa tabella...

]/ψπ+π -	D(*)D(*)	Ϳ/ψω	J/ψπ+π ⁰	ψ (2S) π	J/ψK , π	Ψ(2S)ππ	Ϳ/ψϙ,η	Ϳ/ψγ
Notes	Mass range for B	Low stat	Only B dec	Mass range! No ISR	No ISR No π ⁰	No Search	No B- dec	Only B dec	Mass windo w
X(3872)	Seen	Seen	Not seen	Not seen	Not seen	No search	N/A	Not seen	Seen
Y(3940)	No search	X(3940)?	Seen	No search	Not seen	No search	No search	No Fit	No fit
Y(4260)	Seen	No fit	No fit	No search	No search	No search	Not seen	No fit	N/A
Y(4350)	Not seen	No fit	No fit	No search	No search	No search	Seen	No fit	N/A
Z(4430)	No search	No search	No fit	No search	Seen	No search	No search	No Fit	No searc h
Y(4660)	Not seen	No fit	No fit	No search	No search	No search	Seen	No Fit	N/A

Bibliografia

□Heavy Quarkonium Spectroscopy.

Riccardo Faccini (Rome U. & INFN, Rome) . SLAC-PUB-13080, BABAR-CONF-07-35, Jan 2008. Prepared for 23rd International Symposium on Lepton-Photon Interactions at High Energy (LP07), Daegu, Korea, 13-18 Aug 2007. e-Print: arXiv:0801.2679 [hep-ex]

□Study of J/psi pi+ pi- states produced in B0 ---> J / psi pi+ pi- K0 and B- ---> J / psi pi+ pi- K-. By BABAR Collaboration (B. Aubert et al.). BABAR-PUB-05-038, SLAC-PUB-11370, Jul 2005. Published in Phys.Rev.D73:011101,2006. e-Print: hep-ex/0507090

□La documentazione pubblica dell'esperimento BaBar reperibile su: http://www-public.slac.stanford.edu/babar/

Appendice

$\underline{m}_{es} \in \Delta E \text{ sono scorrelate}$

 $J/\Psi \rightarrow e^+e^-$

 \Box Le due variabili ΔE e m_{es} sono in buona approssimazione scorrelate

Le incertezze su $m_{es} \in \Delta E$

$$\delta(\Delta E) = \sqrt{(\delta E_B)^2 + (\delta E_S)^2}$$

□ L'incertezza su ∆E è dominata dall'errore sull'energia ricostruita E_B L'íncertezza su m_{es} è domínata dall'íncertezza sull'energía del fascío s

 questo implica che essa non dipende dal modo di decadimento di B

 $\delta(m_{ES}) = \frac{1}{m_{ES}} \sqrt{(E_S \ \delta E_S)^2 + (p_B \ \delta p_B)^2}$