Capitolo 10 Test del Modello Standard (LEP fase 1)

Corso di Fisica Nucleare e Subnucleare II

Professor Carlo Dionisi

A.A. 2012-2013

maggio 2013

Il modello Standard delle interazioni Elettrodeboli

Il Modello Standard e' stato riassunto nel capitolo 8.

In questo capitolo sono riassunte alcune misure fatte dagli esperimenti al collisionatore e⁺ e⁻ LEP che costituiscono parte dei Test Sperimentali del Modello Standard ad oggi realizzati. Nel 1989 gli esperimenti ALEPH, DELPHI, L3 e Opal iniziano la raccolta dati al LEP a $\sqrt{s} \cong M_Z$.

Gli esperimenti UA1 e UA2 avevano raggiunto la seguente precisione nella misura della massa dello Z:

 σ (M_Z) = 340 MeV/ c².

Inoltre dalla nucleosintesi si ricavava un limite superiore del numero delle famiglie di neutrini leggeri $Nv \le 4$.

Le previsioni sulle misure di precisione da fare al LEP erano: i) $\sigma(M_z) = 10 \text{ MeV}/\text{ c}^2$; ii) $\Delta N_y = \pm 0.2$

Come vedremo, I risultanti raggiunti furono di gran lunga piu' precisi.

Naturalmente, altre fondamentali aspettative erano: la scoperto del Bosone di Higgs, vedi in seguito, ed eventualmente di nuova fisica non prevista dal Modello Standard. Nel seguito sono riportati i trasparenti utilizzati a lezione che descrivono i punti fondamentali che hanno permesso di ottenere I risultati raggiunti.

LEP e i 4 Esperimenti

Experimental Tests of the Standard Model

L' idea dell' unificazione elettrodebole e' alla base della rappresentazione attuale della fisica delle particelle elementari.

Large Electron Positron Collider

Dal 1989 al 2000 le misure effettuate al CERN hanno fornito un formidabile banco di prova per le previsioni del Modello Standard : I quattro esperimenti combinati hanno raccolto 16,000,000 Z0 e 30,000 eventi W+ W-.

Le misure di precisione delle proprieta' dei bosoni vettori Z0 e W+,(-) hanno fornito I test piu' stringenti della nostra comprensione della fisica delle particelle elementari.

maggio 2013

Le cavità acceleratrici

Come abbiamo visto, in un collider adronico il grosso dell'investimento (a parte l'ingegneria civile) è nei dipoli magnetici.

In un collisore circolare e^+e^- l'investimento maggiore è invece nelle cavità a radiofrequenza necessarie per compensare le perdite per bremsstrahlung ("gli elettroni hanno il paracadute" Bruno Tuschek)

$$P_{syncr} \propto \frac{I_{tot}}{\rho} \frac{E_{beam}^4}{m_b^4}$$

 I_{tot} = intensità del fascio ρ = raggio di curvatura m_b = massa della particella del fascio

A LEP ad es. per $E_{beam} = 104$ GeV la perdita di energia per giro è ~ 3% dell' energia del fascio

1280 cavità RF potenza necessaria alla massima energia (104 GeV): 160 MWatt LEP1: cavità di Cu LEP2: cavità superconduttrici

Misura dell'energia della macchina

I fisici di macchina stabilirono metodi di misura dell'energia dei fasci estremamente prcisi

Depolarizzazione risonante

I fasci sono naturalmente polarizzati trasversalmente $(\langle P_T \rangle \approx 10-20\%)$

Gli spin degli elettroni precedono nel campo magnetico dell'anello con frequenza proporzionale all'energia (momento magnetico anomalo)

La polarizzazione viene distrutta, e misurata, da un campo a radiofrequenza risonante con la frequenza di precessione

Misura della polarizzazione

tramite diffusione Compton da un fascio LASER

N.B. La misura dell'energia fatta in un punto dell'anello deve essere "trasportata" a ciascuna delle intersezioni

ΔE (punto di interazione) = 2 MeV

(20 - 40 ppm)

Misura dell'energia della macchina

L'energia del fascio di LEP e'determinata dalla intensita' del campo magnetico dei dipoli negli archi della macchina:

 $p = 0.3 \text{ B} \rho$

Se il raggio e' noto con la adeguata accuratezza e' anche necessario conoscere B e questo e' difficile:

$$E_{\text{beam}} = \frac{e}{2\pi c} \oint_{\text{LEP}} B \cdot d\ell$$

Ricordiamo i due metodi usati a LEP fase 1, $\sqrt{s} = M_Z$, :

1) **Flux Loop**: questo si misura, vedi Fig 1, determinando il voltaggio indotto nel coil montato in un dipolo di riferimento che e' in serie con gli altri dipoli di LEP. La misura ha una accuratezza assoluta di circa 10⁻⁴. Tuttavia variazioni di temperatura nei diversi dipoli, umidita' del cemento armato di cui sono costruiti etc, rendono la misura non sufficente.

Figure 1: A LEP dipole magnet showing the flux loop and an NMR probe.

maggio 2013

2) **Depolarizzazione risonante**: questo e' il metodo piu' accurato. Usa il fatto che, a causa del momento magnetico anomalo dell'elettrone, il suo spin precede con una data frequenza attorno alla sua direzione nominale vedi Fig. 2. La frequenza di precessione e' data da

$$\nu = \frac{g_e - 2}{2} \frac{E_{\text{beam}}}{m_e c^2}$$

Dove v_s e' chiamata "Spin Tune " ed e' il numero di precessioni dello spin in un singolo giro del fascio nella macchina.

L' effetto Sokolov-Ternov polarizza spontaneamente il fascio nella direzione verticale a causa di una piccola differenza di accoppiamento del campo alla componente di spin up e down degli elettroni del fascio.Per una macchina perfetta la massima polarizzazione e' del 92.4 % e a LEP si otteneva dopo circa 20 minuti. La polarizzazione del fascio e' misurata attraverso lo scattering Compton di un fascio polarizzato di luce laser col fascio stesso di elettroni. Applicando un campo magnetico oscillante perpendicolare al vettore verticale di polarizzazione, si fa il tuning della frequenza di oscillazione fino a quando la polarizzazione non viene distrutta. Il metodo permette una precisione di 0.4 MeV.Tuttavia NON si puo' usare con fasci collidenti. Per cui la precisione raggiunta ad una certa energia deve essere "trasportata" alle energie di collisione. Si ottiene : $\Delta E = 2$ MeV al punto di collisione.

maggio 2013

LEP Laser Polarimeter

Due effetti da correggere:

1) **Effetto maree:** il raggio del fascio viene modificato e il fascio non passa nel centro dei magneti: 1 MeV per 13 µm di spostamento ! Si sono osservate variazioni fino a 20 MeV.

2) **Correnti Vagabonde:** venivano osservate variazioni improvvise della energia del fascio di parecchi MeV. La spiegazione fu data dalla compagnia della elettricita' Svizzera: il passaggio del TGV procurava correnti vagabonde continue che si propagavano nella beam pipe di LEP !

Vagabonding Currents

LEP is affected by the French DC railway line Geneva-Bellegarde

A DC current of 1 A is flowing on the LEP vacuum chamber.

 M_Z e' stata misurata, vedi di seguito, con una precisione di una parte su 10⁵:

$M_Z = 91.1875 \pm 0.0021 \, { m GeV}$

I collisori e+e- sono macchine di precisione (in genere non da scoperta). Gli esperimenti di LEP devono verificare la teoria a livelli del permille o meglio Saranno sensibili alle "**correzioni radiative**" cioè a grafici di ordine superiore al "livello albero". La maggior parte delle correzioni radiative sono di natura EM, e quindi in linea di principio già testate. Più interessanti le **correzioni** "**deboli**" che potrebbero mettere in evidenza limiti della teoria: nuova fisica. N.B. Il top fu scoperto da CDF nel 1994, per il primo periodo quindi le importanti correzioni dovute al top erano calcolate in funzione di M_t . La loro misura permise di prevederne la massa.

Gli eventi a un collisore e+e- sono molto più semplici che a un collisore adronico, perché la collisione è tra due oggetti elementari. Per la stessa ragione tutti gli eventi sono "buoni".

Gli esperimenti devono identificare e misurare l'energia (e/o il momento) di

elettroni μ τ γ quark, identificando se si tratta di *c*, *b*, piuttosto che un quark leggero

I rivelatori al LEP

I 4 rivelatori ALEPH, DELPHI, L3, OPAL

sono stati concepiti a "largo spettro" per coprire tutte le problematiche fisiche prevedibili. Ci sono tuttavia differenze Tutti hanno struttura a "cipolla":

Raggio(m)

5. Rivelatori muoni
2-3 Calorimetri adronici
2.0-2.5 Solenoide per il campo magnetico
1.5 - 2. Calorimetri elettromagnetici
0.3 - 1.5 Rivelatori di tracce (+ identificazione particelle)
0.1 Rivelatori "microvertici"
0. Beam pipe

Calorimetro elettromagnetico. Piombo e camere a Xe.

Calorimetro adronico: Tubi di Iarocci nel ferro del ritorno del flusso

microvertice: due strati microstrip Si doppia faccia per misura di due coord.

maggio 2013

OPAL. L'esperimento semplice

A.A. 2012-2013

L3. I principi di progetto

Spazio molto grande per alta risoluzione nella misura dei momenti dei μ (Higgs) di progetto: 1-2%@ 50GeV

Alta risoluzione energetica per i γ, specialmente a basse energie (BGO) Rivelatore tracciante compatto, elevata risoluzione spaziale (TEC)

Calorimetro di BGO di L3

Bi₄ Ge₃ O₁₂, 7.13 g/cm³ Lunghezza di radiazione= 1.12 cm dE/dx (mip) = 9.2 MeV/cm $\Delta E/E = 5\% @ 100 \text{ MeV (di progetto)}$ $\Delta E/E = 1\% @ 45 \text{ GeV (di progetto)}$ In pratica limitate da "rumore" coerente

Misura della luminosità

La determinazione della luminosità della macchina è fondamentale per la misura delle sezioni d'urto dei processi osservati:

$$N_{eventi} = \sigma \varepsilon \int L(t) dt$$
Luminosità integrata
sul tempo di presa dati
(trigger+ricostruzione +selezione)

Gli esperimenti si sono dotati di speciali calorimetri elettromagnetici posti a piccolo angolo polare rispetto ai fasci ("luminometri") Tutti e quattro gli esperimenti hanno raggiunto precisioni sino ad allora inimmaginabili

 $\Rightarrow \sigma_L / L \simeq 0.1\%$

Processi di base

La misura e' basata sul conteggio degli eventi di diffusione Bhabha a piccolo angolo:

 e^{-}

Il processo e' completamente dominato dallo scambio di un **fotone nel canale t** ed e' descritto al termine di Born dai seguenti diagrammi di Feynman:

regione usata dai luminometri: ≈10-60 mrad

Carlo Dionisi FNSN II A.A. 2012-2013 20

Luminosita' Integrata

efficienza (trigger, conoscenza dell'accettanza geometrica, selezione....)

Luminosity Measurement

The t-channel contribution to $e^+e^- \rightarrow e^+e^-$ dominates at small angles. Detectors typically 25 to 60 mrad from beam.

Very clear electron signal in forward detectors (calorimeters).

Accepted cross section at least $2 \times \sigma_{had}$. $1/\theta^3$ variation.

Experimental difficulty: define geometric edge of acceptance to give cross-section precision $\lesssim 0.05\%$.

Common theory error of $\sim 0.05\%$ (cf $\sim 1\%$ in 1989). (BHLUMI program: S. Jadach, B.F.L. Ward et al.)

Gli osservabili

Il Modello Standard determina con precisione le quantità osservabili ai collisori e^+e^-

•le sezioni d'urto di diffusione: $\sigma_{e+e-\rightarrow ff}(s)$, $f=e,\mu,\tau,q$ •le sezioni d'urto differenziali e le asimmetrie di carica

L'asimmetria avanti/indietro (forward/backward) è definita

$$A_{FB} \equiv (\sigma_F - \sigma_B) / (\sigma_F + \sigma_B)$$

 $\cos \sigma_F = \int_1^0 d\sigma/d(\cos\theta) d\cos\theta, \ \sigma_B = \int_0^{-1} d\sigma/d(\cos\theta) d\cos\theta$

dove θ è l'angolo di scattering del fermione positivo

Le sezioni d'urto $e^+e^- \Rightarrow f^+f^-$

Abbiamo visto che a energie $\sqrt{s} << M_Z$ i grafici dominati sono:

Per $e^+e^- \rightarrow \mu^+\mu^-$

$$\sigma_{Born}^{QED}(s) = \frac{4\pi\alpha^2}{3s} = \frac{\sigma_{pnt}}{s (\text{GeV}^2)} = \frac{87 \text{ nb}}{s (\text{GeV}^2)}$$

Lo stesso vale per gli altri leptoni carichi. Per i quark bisogna tener conto sia delle loro cariche non intere e sia che ce ne sono 3 (uno per colore)

maggio 2013

Carlo Dionisi FNSN II A.A. 2012-2013 26

Formula di Breit Wigner per : $e^+e^- \rightarrow Z^0 \rightarrow f\bar{f}$

Dove ff e' una qualsiasi coppia fermione-antifermione L' Energia del Centro di Massa e' :

$$\sqrt{s} = E_{CM} = E_{e^+} + E_{e^-}$$

$$\begin{aligned} \sigma(\mathbf{e}^{+}\mathbf{e}^{-}\rightarrow\mathbf{Z}^{0}\rightarrow\mathbf{f}\overline{\mathbf{f}}) &= g \frac{\pi}{E_{e}^{2}} \frac{\Gamma_{ee}\Gamma_{\mathbf{f}\overline{\mathbf{f}}}}{(E_{\mathrm{CM}}\cdot M_{Z})^{2} + \Gamma_{Z}^{2}/4} \\ \text{with } g &= \frac{2J_{Z}+1}{(2S_{e^{+}}+1)(2S_{e^{-}}+1)} \end{aligned}$$

 $\bigstar \Gamma_{Z} \text{ is the TOTAL DECAY WIDTH}$ $\Gamma_{Z} = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{q\bar{q}} + \Gamma_{\nu\bar{\nu}}$

 $igstar{} igstar{} igs$

$$\sigma(\mathrm{e^+e^-} \rightarrow \mathrm{Z^0} \rightarrow \mathrm{f}\overline{\mathrm{f}}) = rac{12\pi}{M_Z^2} rac{\Gamma_{ee}\Gamma_{\mathrm{f}\overline{\mathrm{f}}}}{\Gamma_Z^2}^{27}$$

L'espressione della sezione d'urto discussa a bassa energia è valida a livello più basso perturbativo, il "livello albero". È anche detta approssimazione di Born:

A energie vicine alla risonanza e superiori ad essa ci sono importanti termini correttivi, che dobbiamo studiare.

maggio 2013

Carlo Dionisi FNSN II A.A. 2012-2013 28

Correzioni radiative

A) Correzioni fotoniche. Grandi, dipendenti dall'esperimento

1) Radiazione di stato iniziale

Il termine dominante. Se un elettrone o un positrone irradia un fotone l'energia della collisione diminuisce; diventa risonante se \sqrt{s} -MZ. La curva ha una coda alle alte energie

 $\delta\sigma$ (picco) = 30%, $\delta M_Z \approx 200 \text{ MeV}$

2) Radiazione di stato finale

Differential cross-section

Improved Born Approximation for $e^+e^- \rightarrow f\overline{f}$ (Ignoring fermion masses, QED/QCD ISR/FSR ...)

$$\begin{split} \frac{d\sigma_{\rm ew}}{d\cos\theta} &= \frac{\pi N_c^{\rm f}}{2s} 16 |\chi(s)|^2 \times \\ & \left[(g_{\rm Ve}^2 + g_{\rm Ae}^2)(g_{\rm Vf}^2 + g_{\rm Af}^2)(1 + \cos^2\theta) + 8g_{\rm Ve}g_{\rm Ae}g_{\rm Vf}g_{\rm Af}\cos\theta \right] \\ & + [\gamma \; {\rm exchange}] \; + \; [\gamma Z \; {\rm interference}] \end{split}$$

Where
$$\chi(s) = \frac{G_{\rm F}M_{\rm Z}^2}{8\pi\sqrt{2}} \frac{s}{s - M_{\rm Z}^2 + is\Gamma_{\rm Z}/M_{\rm Z}}$$

 $|\chi(s)|^2$ gives lineshape as a function of s. Even term in $\cos \theta$ gives total cross-section

$$\sigma_{\rm ff} \propto (g_{\rm Ve}^2 + g_{\rm Ae}^2)(g_{\rm Vf}^2 + g_{\rm Af}^2)$$

Odd term in $\cos \theta$ leads to forward-backward asymmetry:

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$$

where $\sigma_{\rm F} = \int_0^1 (d\sigma/d\cos\theta) d\cos\theta$. At the Z peak:

$$A_{\rm FB}^{0,\,\rm f} = \frac{3}{4} \frac{2g_{\rm Ve}g_{\rm Ae}}{g_{\rm Ve}^2 + g_{\rm Ae}^2} \frac{2g_{\rm Vf}g_{\rm Af}}{g_{\rm Vf}^2 + g_{\rm Ae}^2} \equiv \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\rm f}$$

 $A_{\rm FB}$ depends on $g_{\rm Vf}/g_{\rm Af}$, i.e. on $\sin^2 \theta_{\rm eff}$ Cross-section plus $A_{\rm FB}$ allow $g_{\rm Vf}$ and $g_{\rm Af}$ to be derived.

Cross-section and partial widths

Cross-section as a function of s (from $|\chi(s)|^2$): "Z lineshape"

$$\sigma_{\rm ff}(s) = \sigma_{\rm ff}^0 \frac{s\Gamma_{\rm Z}^2}{(s - M_{\rm Z})^2 + s^2\Gamma_{\rm Z}^2/M_{\rm Z}^2}$$

where pole cross-section is

$$\sigma_{\rm ff}^0 = \frac{12\pi}{M_{\rm Z}^2} \, \frac{\Gamma_{\rm ee} \Gamma_{\rm f\bar{f}}}{\Gamma_{\rm Z}^2}.$$

with $\Gamma_{f\bar{f}}/\Gamma_{Z}=BR(Z\to f\bar{f})$ and partial width is

$$\Gamma_{\rm f\bar{f}} = N_c^{\rm f} \frac{G_{\rm F} M_{\rm Z}^3}{6\sqrt{2}\pi} \left(g_{\rm Af}^2 + g_{\rm Vf}^2\right)$$

+ QED/QCD corrections eg. QCD: $\Gamma_{q\bar{q}} \rightarrow \Gamma_{q\bar{q}}(1 + \alpha_s/\pi + \cdots)$ Total width of Z

 $\Gamma_{\rm Z} = \Gamma_{\rm had} + 3\Gamma_{\ell\ell} + \Gamma_{\rm inv} = \Sigma\Gamma_{\rm q\bar{q}} + 3\Gamma_{\ell\ell} + N_{\nu}\Gamma_{\nu\nu}$

Comparing total width to partial width gives N_{ν} Cross-sections and widths correlated. Choose to fit:

- *M*_Z, Γ_Z, σ⁰_h
- Ratios: $R_{\rm e}^0 \equiv \Gamma_{\rm had}/\Gamma_{\rm ee}, R_{\mu}^0 \equiv \Gamma_{\rm had}/\Gamma_{\mu\mu}, R_{\tau}^0 \equiv \Gamma_{\rm had}/\Gamma_{\tau\tau}$ or $R_{\ell}^0 \equiv \Gamma_{\rm had}/\Gamma_{\ell\ell}$
- Asymmetries: $A^{0,\,\rm e}_{\rm FB},\,A^{0,\,\mu}_{\rm FB}$ and $A^{0,\,\tau}_{\rm FB}$ or $A^{0,\,\ell}_{\rm FB}$

Extra information from tagging some quark flavours (lecture 2).

QED corrections

Dominant QED correction from initial state radiation.

Accounted for by radiator function H. We want $\sigma_{\rm ew}(s)$

$$\sigma(s) = \int_{4m_{\rm f}^2/s}^1 dz H_{\rm QED}^{\rm tot}(z,s) \sigma_{\rm ew}(zs). \label{eq:sigma_ew}$$

LEP1 data samples

Approximate luminosity delivered per year.

(Experiments collect 10-15% less)

year	centre-of-mass	total	off-peak
	energies	luminosity	luminosity
	[GeV]	$[pb^{-1}]$	$[pb^{-1}]$
1989	88.2 – 94.2	2	1
1990	88.2 – 94.2	9	4
1991	88.5 – 93.7	19	7
1992	91.3	29	0
1993	89.4, 91.2, 93.0	40	20
1994	91.2	65	
1995	89.4, 91.3, 93.0	40	20

In 1989-1991, 6 off-peak points were measured.

In 1993 and 1995 only 2 off-peak points were selected, to maximise the statistical precision. The exact values of the energies are chosen to allow resonant depolarisation at the end of each fill.

maggio 2013

Typical $\mathrm{e^+e^-} ightarrow \mathrm{Z}^0$ Events

 $e^+e^- \rightarrow Z^0 \rightarrow e^+e^-$

 $e^+e^- \rightarrow Z^0 \rightarrow \mu^+\mu^-$

 $\mathrm{e^+e^-}
ightarrow \mathrm{Z^0}
ightarrow au^+ au^-$

In $e^+e^- \rightarrow Z^0 \rightarrow \tau^+\tau^-$ event, the tau leptons decay within the detector (lifetime $\sim 10^{-13} s$), here $\tau^- \rightarrow e^- \overline{\nu}_e \nu_{\tau}$ and $\tau^+ \rightarrow \mu^+ \nu_{\mu} \overline{\nu}_{\tau}$.

Event selection

A few very simple cuts can distinguish hadronic, e^+e^- , $\mu^+\mu^-$ and $\tau^+\tau^-$ events, and also background from $\gamma\gamma$, cosmic rays...

The difficult task is to control systematic errors - how good is Monte Carlo description of data?

Example 1: Hadronic event selection from L3

Event selection

Example 2: $\Sigma | p_{\mathrm{tracks}} |$ vs $\Sigma E_{\mathrm{clusters}}$ for leptons

Representative values (vary from experiment to experiment)

Channel	hadron	$\mathrm{e^+e^-}$	$\mu^+\mu^-$	$\tau^+\tau^-$
Efficiency %	99	98	98	80
Background %	0.5	1	1	2
Syst error %	0.07	0.2	0.1	0.4

Cross-sections vs \sqrt{s}

LEP combined results

Z resonance parameters - recall pre-LEP hopes:

- $\sigma(M_{\rm Z}) \approx 10$ MeV (limited by beam energy precision)
- Number of generations $\sigma(N_{\nu}) \approx 0.2$

Fitted	$M_{\rm Z} ~ \rm [GeV]$	91.1875 \pm 0.0021
	$\Gamma_{\rm Z}$ [GeV]	$\textbf{2.4952} \pm \textbf{0.0023}$
	$\sigma_{ m h}^0$ [nb]	$\textbf{41.540} \pm \textbf{0.037}$
	R^0_ℓ	$\textbf{20.767} \pm \textbf{0.025}$
	$A_{ m FB}^{0,\ell}$	$\textbf{0.0171} \pm \textbf{0.0010}$
Derived	$\Gamma_{\rm inv}$ [MeV]	499.0 \pm 1.5
	$\Gamma_{\rm had}$ [MeV]	1744.4 \pm 2.0
	$\Gamma_{\ell\ell}$ [MeV]	$\textbf{83.984} \pm \textbf{0.086}$
	N_{ν}	$\textbf{2.984} \pm \textbf{0.008}$

Summary - Very precise measurements of Z mass, width, cross-sections, partial widths and lepton forward-backward asymmetries.

High statistics data samples. Careful control of systematic errors.

Dati Raccolti a DELPHI

Parametri in input

 $\alpha(0) = 1/137.036$

 $\alpha_s(M_Z) = 0.11 \pm 0.01$

 $G_F = 1.166389(22) \times 10^{-5} \text{ GeV}$

 M_Z = estratta dalla forma di righa

 M_H ignota, influenza correzioni radiative, che sono poco sensibili al suo valore esatto (dipendenza logaritmica)

 $m_{ve} = m_{v\mu} = m_{v\tau} = 0$

 m_e , m_μ , $m_ au$

 m_u, m_d, m_s Le masse dei quark leggeri sono (a parte la massa dell'higgs) i parametri peggio noti. L'incertezza sui loro valori si riflette praticamente solo sul contributo adronico ai diagrammi di polarizzazione del vuoto fotonici $\Rightarrow \alpha(M_Z)$

 m_c, m_b

 m_t non nota inizialmente, predetta da correzioni radiative in output, poi (1994) in input

il Fit Elettrodebole

Number of Generations

★ So far only discussed 3 generations of fermions, e.g. $\{e^-, \mu^-, \tau^-\}$

★ What about a possible fourth generation ?

$$\begin{pmatrix} e^- \ d \\ \nu_e \ u \end{pmatrix}, \begin{pmatrix} \mu^- \ s \\ \nu_\mu \ c \end{pmatrix}, \begin{pmatrix} \tau^- \ b \\ \nu_\tau \ t \end{pmatrix}, +?$$

★ The ${
m Z}^0$ boson couples to ALL fermions, including neutrinos. Therefore the total decay width, Γ_Z has contributions from all fermions $m_f < M_Z/2$

$$\begin{split} \Gamma_{Z} &= \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{qq} + \Gamma_{\nu\overline{\nu}} \\ \text{with } \Gamma_{\nu\overline{\nu}} &= \Gamma_{\nu_{e}\overline{\nu}_{e}} + \Gamma_{\nu_{\mu}\overline{\nu}_{\mu}} + \Gamma_{\nu_{\tau}\overline{\nu}_{\tau}} \end{split}$$

- ★ If there were an additional generation, it seems likely that the fourth generation neutrino would be light and, if so, would be produced at LEP, $e^+e^- \rightarrow Z^0 \rightarrow \nu \overline{\nu}$
- ★ Wouldn't observe the neutrinos directly, but could infer their presence from the effect on the Z⁰ resonance curve

At the peak of the ${f Z}^0$ resonance $\sqrt{s}=M_Z$

$$\sigma^0_{
m far f}~=~rac{12\pi}{M_Z^2}rac{\Gamma_{ee}\Gamma_{
m far f}}{\Gamma_Z^2}$$

A fourth generation neutrino would INCREASE the Z^0 decay rate and thus increase Γ_Z . As a result one would observe a DECREASE the measured peak cross sections for the visible final states.

★ Measure the $e^+e^- \rightarrow Z^0 \rightarrow f\overline{f}$ cross-sections for all visible decay modes (*i.e.* all fermions apart from $\nu\overline{\nu}$)

EXAMPLES:

★ Have already measured M_Z and Γ_Z from the shape of the Breit-Wigner resonance. Therefore obtain $\Gamma_{f\bar{f}}$ from the peak cross-sections in each decay mode using

$$\sigma^0_{
m far f}~=~rac{12\pi}{M_Z^2}rac{\Gamma_{ee}\Gamma_{
m far f}}{\Gamma_Z^2}$$

Note, obtain Γ_{ee} from

$$\sigma^0_{ee}~=~rac{12\pi}{M_Z^2}rac{\Gamma^2_{ee}}{\Gamma^2_Z}$$

 Can relate the partial widths to the measured TOTAL width (from the resonance curve)

$$\Gamma_Z = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{qq} + N_{\nu}\Gamma_{\nu\nu}$$

where $N_{
u}$ is the number of neutrinos species and $\Gamma_{
u
u}$ is the partial width for a single neutrino species.

The difference between the measured value of Γ_Z and the sum of the partial widths for all visible final states gives the "invisible" width.

Γ_Z	2494.8 ± 4.1 MeV
Γ_{ee}	83.7 ± 0.2 MeV
$\Gamma_{\mu\mu}$	84.0 ± 0.3 MeV
$\Gamma_{ au au}$	83.9 ± 0.4 MeV
$\Gamma_{\mathbf{q}\overline{\mathbf{q}}}$	1745.3 ± 3.5 MeV
$N_ u \Gamma_{ u u}$	497.3 ± 3.5 MeV

In the Standard Model calculate

	$\Gamma_{\nu\nu}$	=	$167{ m MeV}$
therefore	$N_{ u}$	_	497.3 ± 3.5
literetore		_	167
		=	2.98 ± 0.02

 ${f 3}$ generations of light neutrinos ($m_
u < {M_{f Z^0}\over 2}$)

 \Rightarrow Probably only 3 GENERATIONS !

In addition:

- ★ $\Gamma_{ee}, \Gamma_{\mu\mu}, \Gamma_{\tau\tau}$ are consistent ⇒ universality of the lepton couplings to the Z^0
- ★ T_{qq} is consistent with the expected value which assumes 3 COLOURS - yet more evidence for colour

Misura diretta del numero di famiglie di neutrini leggeri al LEP

Vantaggi di una misura diretta

II valore di G_{inv} potrebbe essere dovuto non solo ai neutrini ma anche ad altre particelle stabili e debolmente interagenti con m<M_{Z°}/2 N_n>3

Il valore di G_{inv} potrebbe anche essere più piccolo del previsto a causa, ad esempio, di accoppiamenti non previsti dallo SM N_n<3

Una misura diretta della Γ_{inv} risulta allora fondamentale

L'idea chiave

 > Forte segnatura: un solo fotone con E_γ = √s – M_{z°}
 > Possibilità di osservare un gran numero di eventi in prossimità di M_{z°}

La misura è diretta ma difficile!

 $e^+e^- \rightarrow v \,\overline{v} \,\gamma$

 $s' = s \left(1 - 2E_{\gamma} / \sqrt{s} \right)$

 $\sigma(e+e- \rightarrow vv\gamma)$

la sezione d' urto dipende dall' energia del γ e dall' angolo di emissione; è calcolabile all' ordine più basso, trascurando il grafico

❷ e nel limite ($m_W \rightarrow \infty$).

I fondi e gli "issue" sperimentali

Radiative Bhabha scattering

Single Photon Events in L3 and OPAL

maggio 2013

A.A. 2012-2013

Single Photon Spectrum and Cross-Section

Risultati

 $N_v = 2.98 \pm 0.07 \text{ (stat)} \pm 0.07 \text{ (sys)}$

maggio 2013

Parity Violation in ${f Z}^0$ Decays

<u>EXAMPLE</u>: $e^+e^- \rightarrow \mu^+\mu^-$

- Parity is conserved in the strong and EM interactions
- ★ Parity is maximally violated in the WEAK charged current interaction.

W-bosons mainly couple to LH particles

What about the WEAK neutral current ?

- ★ Parity IS violated in the WEAK neutral current
- ★ The Z⁰ is a 'mixture' of a parity conserving VECTOR field and a parity violating 'W-like' field.

Perform a 'parity' violation experiment analogous to that of Handout VI page 13 : FORWARD-BACKWARD asymmetry

If parity is conserved the number of μ^- observed in FORWARD hemisphere will be equal to number observed in BACKWARD hemisphere

For data recorded at $\sqrt{s} = M_{\mathbf{Z}^0}$:

 $A_{FB} = 0.0171 \pm 0.0010$

i.e. a small but statistically significant non-zero asymmetry ⇒ PARITY VIOLATED

Lepton forward-backward asymmetries

EXPLANATION

 $Z^0 f \overline{f}$ coupling is a mixture of VECTOR and VECTOR—AXIAL-VECTOR couplings.

$${g\over\cos heta_W}{1\over2}\gamma^\mu(C_V-C_A\gamma^5)$$

Mixture determined by WEAK MIXING ANGLE θ_W . For leptons

$$C_V = (1 - 4 \sin^2 \theta_W)$$

 $C_A = 1$

The measured asymmetry:

Small asymmetry implies $(1 - 4\sin^2\theta_W) \sim 0$. By measuring the asymmetry measure $\sin^2\theta_W$ ALL LEP A_{FB} : $\sin^2\theta_W = 0.23099 \pm 0.0053$

 ${\sf LEP} o M_{{
m Z}^0}$ and ${
m sin}^2 heta_W$

Muon Forward-Backward Asymmetry

Lepton Universality

Plot $A_{\rm FB}^{0,\ell}$ vs. $R_{\ell}^0 = \Gamma_{\rm had} / \Gamma_{\ell\ell}$. Contours contain 68% probability.

Lepton universality OK. Results agree with SM (arrows)

$$\begin{split} M_{\rm t} &= 174.3 \pm 5.1 \; {\rm GeV} \\ M_{\rm H} &= 300^{+700}_{-186} \; {\rm GeV} \; ({\rm low} \; M_{\rm H} \; {\rm preferred}) \\ \alpha_s(M_{\rm Z}^2) &= 0.118 \pm 0.002 \end{split}$$

Next lecture: interpretation of asymmetries in terms of $\sin^2 heta_{
m eff}^{
m lept}$

Differential Cross-Sections

maggio 2(

Standard Model relationships

Masses of heavy gauge bosons and their couplings to fermions depend on SAME mixing angle

$$\cos \theta_{\rm W} = M_{\rm W}/M_{\rm Z}$$

 $SU(2) \times U(1)$ coupling constants, g, g', proportional to electric charge $e: g = e \sin \theta_W, g' = e \cos \theta_W$

where Q, g_a and g_v depend on fermion type, with

 $g_a = T^3 = \pm \frac{1}{2}$ $g_v = (T^3 - 2Q\sin^2\theta_W) = \pm \frac{1}{2}(1 - 4|Q|\sin^2\theta_W)$ $g_v/g_a \text{ gives } \sin^2\theta_W \text{ if you know } |Q|.$

Standard Model relationships

Relate $e, \sin \theta_W$ and M_W to the best measured parameters:

$$\alpha \equiv \frac{e^2}{4\pi} = 1/137.035\,999\,76(50)$$

$$G_{\rm F} \equiv \frac{\pi\alpha}{\sqrt{2}M_{\rm W}^2 \sin^2 \theta_{\rm W}} = 1.166\,39(1) \times 10^{-5}\,{\rm GeV}^{-2}$$

$$M_{\rm Z} = 91.1875(21)\,{\rm GeV}$$

$G_{\rm F}$ measured from muon decay; $M_{\rm Z}$ from LEP.

These relations are true at tree level, but to check that they are valid, must take into account radiative corrections, which give sensitivity to virtual heavy particles, and possibly new physics!

Aside: Other SM inputs needed are fermion masses, Higgs mass, CKM matrix (quark mass eigenstates are not weak eigenstates), strong coupling constant, α_s

Improved Born Approximation

1) Si lascia la forma dell'elemento di matrice (e della sezione d'urto) invariato, cioè nell'approssimazione di Born.

2) Si assorbe il grosso delle correzioni radiative nelle "costanti" di accoppiamento che diventano funzioni dell'energia.

Per stati finali $\neq e^+e^-$ (presente il canale *t*) e da *bb* (ci sono correzioni di vertice in più)

$$\begin{split} M_{f\bar{f}} &= Q_e Q_f \, \frac{4\pi\alpha(M_z)}{s} J_{em}^e J_{em}^f + \frac{\sqrt{2}G_F M_Z^2(1+\delta\rho)}{s-M_Z^2+is} J_3^e J_3^f \\ J_{em_{\mu}}^f &= \gamma_{\mu} \qquad J_{3_{\mu}}^f = \gamma_{\mu} \bigg[T_3^{W,f} \left(1-\gamma_5\right) - 2Q_f \bar{s}_W^2 \bigg] \end{split}$$

Cos'è cambiato?

- α fisso $\Rightarrow \alpha(M_Z)$
- larghezza totale dipende da s $M_Z \Gamma_Z \Rightarrow s \Gamma_Z / M_Z$

•
$$\delta \rho = \frac{3G_F M_t^2}{8\pi^2 \sqrt{2}} + \left(\frac{3G_F M_t^2}{8\pi^2 \sqrt{2}}\right)^2 \frac{19 - 2\pi^2}{3} + \dots - \frac{11G_F M_W^2}{24\pi^2 \sqrt{2}} \tan^2 \theta_W \ln \frac{M_H^2}{M_W^2} + \dots$$

• $\sin^2 \theta_W \Rightarrow \bar{s}_W^2 = 1 - \frac{M_W^2}{(1 + \delta \rho)M_Z^2}$

maggio 2013

Carlo Dionisi FNSN II A.A. 2012-2013 64

Summary

Now have 5 precise measurements of fundamental parameters of the Standard Model

★ α_{em} ★ $G_{\rm F}$ =(1.16632±0.00002)×10⁻⁵ GeV⁻² ★ $M_{\rm W}$ = (80.423±0.038) GeV ★ $M_{\rm Z^0}$ = (91.1875±0.0021) GeV ★ $\sin^2 \theta_W$ = 0.23143±0.00015

In the Standard Model, ONLY 3 are independent.

Their consistency is an incredibly powerful test of the Standard Model of Electroweak Interactions !

<u>Bibliografia</u>

Burcham and Jobes: Pagine 473 - 505;

- J. Mnich: Appendice 4;
- P. Wells: Appendice 5.