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1: Z Resonance

• The LEP machine, beam energy, detectors

• Z lineshape: cross-sections, luminosity

• Lepton Forward-Backward asymmetry, polarised asymmetries

• Number of light neutrinos, lepton couplings

2: LEP2 Results

• WW and ZZ physics at LEP2

• b-tagging, electroweak physics with heavy flavours (b and c)

• Global electroweak fits

• Standard Model Higgs boson - a hint?
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LEP Time Line

1960’s Glashow-Weinberg-Salam SU(2) × U(1) theory of elec-

troweak interactions, prediction of W and Z gauge bosons.

1972 SU(3)colour QCD theory of strong interactions

1976 CERN study group considers Large Electron-Positron

storage ring,
√

s = 2 × 100 GeV, L ≈ 1032cm−2s−1

1979 Observation of gluon at PETRA.

December: 27 km design approved by CERN council

1983 Chose LEP experiments.

W and Z observed at CERN SPS

1989 Scooped! e+e− collisions at Z in MARK II at SLC.

First collisions in LEP with
√

s ≈ MZ

1995 Gradual installation of LEP2 SC RF system starts

Energy raised to
√

s = 140 GeV at end of year.

Top quark observation at Fermilab confirmed

1996 W pair threshold crossed at LEP...

1999 Nobel Prize for ’t Hooft and Veltman for “for elucidating the

quantum structure of electroweak interactions in physics”

2000 Last year of LEP running with
√

s up to 209 GeV.
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Electron-positron annihilation
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LEP collected 4.5 million Z,

12 thousand WW per experiment
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Z resonance lineshape

To measure the Z mass, total width and cross-section, partial widths

(branching ratios) and couplings:

• LEP machine gives e+e− collisions at a few energies on and

near the Z peak and precise measurement of Ebeam

• Detectors ALEPH, DELPHI, L3, OPAL distinguish Z final states

and measure the luminosity from QED t-channel process

e+e− → e+e− (Bhabha scattering)

σ(
√

s) = (Nobserved − Nbackground)/εL

• Monte Carlo simulation of the signal efficiency and background.

• Theoretical prediction of the lineshape

• Match precision from 4.5 million Z events per experiment -

relative statistical error about 5 × 10−4.

• Several thousand people involved

• σ(MZ) ≈ 340 MeV from UA2+CDF in 1989. Hoped to reduce

to ≈ 10 MeV (limited by beam energy precision)

• Count the number of generations. 2.5 generations were known

in 1989, top quark and ντ not yet established. Number of light

neutrinos limited by big bang nucleosynthesis to <∼ 4. Expected

precision of about ±0.2 on the number.
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The LEP Collider

A good fill lasts around 10 h (LEP1 at Z) or 3 h (LEP2)
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Beam energy - resonant depolarisation

Ebeam =
e

2π

∮

B · d`

Spin of electrons aligns with vertical B field due to synchrotron

radiation. Slow (hours) build up of transverse polarisation IF beam

orbit sufficiently smooth.

Spins precess in B field. Number of precessions per turn of LEP:

νs =
ge − 2

2

e

2πme

∮

B · d` =
ge − 2

2

Ebeam

me

νs ≈ 101.5, 103.5, 105.5 at
√

s = peak-2, peak, peak+2

Apply oscillating horizontal B field,

ν, at one place. Scan ν.

If ν = νs, polarisation is destroyed.
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Stability? Quadrupole movements...

1991 - first calibrations saw fluc-

tuations of order 10 MeV. Earth

tides driven by moon and sun.
Moon

ecliptic

Earth Rotation
Axis

∆R < 0
∆R > 0

εM

εE

Length of orbit fixed by RF system, but magnets move with ground.

Beam no longer goes through centre of quadrupoles. Sensitive to

1mm change in 27 km, typical 10 MeV peak-to-peak.
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Also see ground distortion due to lake level, heavy rain...
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Stability? Dipole fields...

1993: Measured energy at the end of many fills

1995: Measurements of B field in tunnel dipoles

5 MeV
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16th August 1995

Human activity increasing dipole fields during fill: BIAS ≈ 5 MeV

Long investigation revealed cause - Vagabond electric currents from

nearby trains. Correct earlier years using model of average train

behaviour. Final MZ systematic of 1.7 MeV
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LEP1 data samples

Approximate luminosity delivered per year.

(Experiments collect 10–15% less)

year centre-of-mass total off-peak

energies luminosity luminosity

[GeV] [pb−1] [pb−1]

1989 88.2 – 94.2 2 1

1990 88.2 – 94.2 9 4

1991 88.5 – 93.7 19 7

1992 91.3 29 0

1993 89.4, 91.2, 93.0 40 20

1994 91.2 65

1995 89.4, 91.3, 93.0 40 20

In 1989-1991, 6 off-peak points were measured.

In 1993 and 1995 only 2 off-peak points were selected, to maximise

the statistical precision. The exact values of the energies are

chosen to allow resonant depolarisation at the end of each fill.
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Cut-away view of OPAL
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Hadronic event in ALEPH
M
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Run=9063    Evt=7848    ALEPH

• This example has 3 jets e+e− → qqg

• Curved tracks in B field (ALEPH and DELPHI have

superconducting solenoids - B field about 1.5 T compared to

about 0.5 T in OPAL and L3)

• Many tracks and clusters in calorimeters
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e+e− → e+e− event in OPAL

 Run : even t  4093 :   1150   Da t e  930527  T ime   20751                                  

 Ebeam 45 . 658  Ev i s   94 . 4  Emi ss   - 3 . 1  V t x  (   - 0 . 05 ,    0 . 08 ,    0 . 36 )               

 Bz=4 . 350   Th r us t =0 . 9979  Ap l an=0 . 0000  Ob l a t =0 . 0039  Sphe r =0 . 0001                  

C t r k (N=   2  Sump=  92 . 4 )  Eca l (N=   9  SumE=  90 . 5 )  Hca l (N=  0  SumE=   0 . 0 )  

Muon (N=   0 )  Sec  V t x (N=  0 )  Fde t (N=  1  SumE=   0 . 0 )  

Y

XZ

   200 .  cm.   

 Cen t r e  o f  sc r een  i s  (    0 . 0000 ,    0 . 0000 ,    0 . 0000 )         

50  GeV2010 5

• Lepton pair events have low multiplicity

• Electrons are identified by a track in the central detector, and a

large energy deposit in the electromagnetic calorimeter,

E/p = 1.
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e+e− → µ
+
µ

− event in L3

HCAL

BGO

Tracking

Muon
Chambers

• Muons penetrate the entire detector, and leave little energy in

the calorimeters.

• L3 detector emphasizes lepton and photon id with a precise

BGO crystal ECAL, and large muon spectrometer.

• The tracking volume is relatively small (radius 1m)

• ALL detectors inside 6m radius solenoid, field 0.5T.
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e+e− → τ
+
τ

− event in DELPHI

 DELPHI Interactive Analysis
Run: 23438
Evt: 581

Beam: 45.6 GeV

Proc: 8-Mar-1992 

DAS : 18-Jun-1991
03:22:19

Scan: 29-Apr-1992
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• Tau lepton decays dominated by 1 and 3 charged tracks, with or

without neutrals, missing neutrino(s), back-to-back very narrow

“jets”.

• DELPHI has extra particle ID detectors, RICH.
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Event selection

A few very simple cuts can distinguish hadronic, e+e−, µ+µ− and

τ+τ− events, and also background from γγ, cosmic rays...

The difficult task is to control systematic errors - how good is Monte

Carlo description of data?

Example 1: Hadronic event selection from L3

e+e− → hadrons(γ)

(|cos θt| ≤ 0.74)

data 1994

e+e− → hadrons(γ)

e+e− → τ+τ−(γ)

e+e− → e+e−(γ)

e+e− → µ+µ−(γ)

Ncl

Ev
en
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10 4

0 25 50 75 100
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Event selection

Example 2: Σ|ptracks| vs ΣEclusters for leptons
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OPAL

Representative values (vary from experiment to experiment)

Channel hadron e+e− µ+µ− τ+τ−

Efficiency % 99 98 98 80

Background % 0.5 1 1 2

Syst error % 0.07 0.2 0.1 0.4
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Luminosity Measurement

e-

e+

e-

e+

γ

The t-channel contribution to

e+e− → e+e− dominates at small

angles. Detectors typically 25 to

60 mrad from beam.

Very clear electron signal in forward detectors (calorimeters).

E L/
E Be

am

ER/EBeam

DELPHI

Accepted cross section at least 2 × σhad. 1/θ3 variation.

Experimental difficulty: define geometric edge of acceptance to give

cross-section precision <∼ 0.05%.

Common theory error of ∼ 0.05% (cf ∼ 1% in 1989).

(BHLUMI program: S. Jadach, B.F.L. Ward et al.)
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Standard Model relationships

Masses of heavy gauge bosons and their couplings to fermions

depend on SAME mixing angle

cos θW = MW/MZ

SU(2) × U(1) coupling constants, g, g′, proportional to electric

charge e: g = e sin θW, g′ = e cos θW

f

f

γ

f

f

Z

f

f

W

−ieQγµ

ieγµ(gv − gaγ5)
1

2 sin θW cos θW

ieγµ(1 − γ5)
1

2
√

2 sin θW

where Q, ga and gv depend on fermion type, with

ga = T 3 = ±1

2

gv = (T 3 − 2Q sin2 θW ) = ±1

2
(1 − 4|Q| sin2 θW )

gv/ga gives sin2 θW if you know |Q|.
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Standard Model relationships

Relate e, sin θW and MW to the best measured parameters:

α ≡ e2

4π
= 1/137.035 999 76(50)

GF ≡ πα√
2M 2

W sin2 θW

= 1.166 39(1) × 10−5 GeV−2

MZ = 91.1875(21) GeV

GF measured from muon decay; MZ from LEP.

These relations are true at tree level, but to check that they are

valid, must take into account radiative corrections, which give

sensitivity to virtual heavy particles, and possibly new physics!

Aside: Other SM inputs needed are fermion masses, Higgs mass,

CKM matrix (quark mass eigenstates are not weak eigenstates),

strong coupling constant, αs
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Radiative corrections

Propagator corrections are the same for each fermion type.

Z/W/γ Z/W/γ

f

f

Z/W/γ Z/W/γ

W

Z/W/γ
Z/W Z/W

H

Z/W

QED, QCD and vertex corrections give fermion dependent terms.

e-

e+

Z
f

f

γ e-

e+

Z

q

q

g
Z

W

b

b

t

t

Electroweak corrections absorbed into effective couplings:

gV ≡ geff
V =

√

(1 + ∆ρ)(T 3 − 2Q sin2 θeff)

gA ≡ geff
A =

√

(1 + ∆ρ)T 3

sin2 θeff = (1 + ∆κ) sin2 θW

∆ρ =
3GFM2

W

8
√

2π2

(

M2
t

M2
W

− tan2 θW

[

ln
M2

H

M2
W

− 5

6

])

+ · · ·

∆κ =
3GFM2

W

8
√

2π2

(

cot2 θW
M2

t

M2
W

− 11

9

[

ln
M2

H

M2
W

− 5

6

])

+ · · ·

Extra M2
t /M 2

W contributions for b quark
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Radiative corrections

The value of GF is also modified:

GF =
πα√

2M 2
W sin2 θW

1

1 − ∆r

where

∆r = ∆α + ∆rw = ∆α − ∆κ + · · ·
∆α term incorporates the running of the electromagnetic coupling

due to fermion loops in the photon propagator. The difficult part of

the calculation is to account for all the hadronic states. Use

experimental measurement of e+e− → hadrons at low
√

s.

α(s) =
α(0)

1 − ∆α

α(0) = 1/137.035 999 76(50) ; α(MZ) = 1/128.936(46)

Quadratic dependence on Mt

Logarithmic dependence on MH

Can fit both Mt and MH

Use programs such as ZFITTER (D Bardin et al.) and TOPAZ0

(G Montagna et al.) for calculations to higher order.

Leading order expressions above are for large MH.
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QED corrections

Dominant QED correction from

initial state radiation.

e-

e+

Z
f

f

γ

Accounted for by radiator function H . We want σew(s)

σ(s) =

∫ 1

4m2

f
/s

dzHtot
QED(z, s)σew(zs).

Ecm [GeV]

σ ha
d 

[n
b]

σ from fit
QED unfolded

measurements, error bars
increased by factor 10
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σ0
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MZ
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Differential cross-section

θ
e- e+

f

f

Improved Born Approximation for e+e− → ff

(Ignoring fermion masses, QED/QCD ISR/FSR ...)

dσew

d cos θ
=

πN f
c

2s
16|χ(s)|2 ×

[

(g2
Ve + g2

Ae)(g
2
Vf + g2

Af)(1 + cos2 θ) + 8gVegAegVfgAf cos θ
]

+[γ exchange] + [γZ interference]

Where
χ(s) =

GFM2
Z

8π
√

2

s

s − M 2
Z + isΓZ/MZ

|χ(s)|2 gives lineshape as a function of s.

Even term in cos θ gives total cross-section

σff ∝ (g2
Ve + g2

Ae)(g
2
Vf + g2

Af)

Odd term in cos θ leads to forward-backward asymmetry:

AFB =
σF − σB

σF + σB

where σF =
∫ 1

0
(dσ/d cos θ)d cos θ. At the Z peak:

A0, f
FB =

3

4

2gVegAe

g2
Ve + g2

Ae

2gVfgAf

g2
Vf + g2

Af

≡ 3

4
AeAf

AFB depends on gVf/gAf , i.e. on sin2 θeff

Cross-section plus AFB allow gVf and gAf to be derived.
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Polarised asymmetries

Final state fermions in e+e− → ff are polarised. Polarisation can

be measured for τ lepton final states at LEP.

Pτ ≡ (σ+ − σ−)/(σ+ + σ−)

where σ+(−) cross section for producing + (-) helicity τ− leptons.

Eg. τ → πν, momentum of the π depends on the τ helicity

Initial state: LEP beams are unpolarised (except for special energy

calibration conditions)

Stanford Linear Collider - longitudinally polarised electron beam to

detector SLD. Electron beam ≈ 75% polarised from 1994–1998.

Final
Focus

IP

Compton
Polarimeter

Collider 
Arcs

Linac

e+ 
Source

e+ 
Return Line

Spin Rotation
Solenoids

Thermionic
Source

Polarized 
e− Source

Electron Spin
Direction

e+
Damping Ring

e−
Damping Ring e− Spin

Vertical

e− Extr. Line 
Spectrometer

e+ Extr. Line 
Spectrometer

(LTR 
Solenoid)

Knowing polarisation of final (τ ) or initial (SLD) state, can construct

left-right, left-right-forward-backward... asymmetries, and measure

Ae or Af , eg.

ALR(s) =
NL − NR

NL + NR

1

〈Pe〉
, A0

LR ≡ Ae
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Cross-section and partial widths

Cross-section as a function of s (from |χ(s)|2): “Z lineshape”

σff(s) = σ0
ff

sΓ2
Z

(s − MZ)2 + s2Γ2
Z/M 2

Z

where pole cross-section is

σ0
ff =

12π

M2
Z

ΓeeΓf f̄

Γ2
Z

.

with Γf f̄/ΓZ = BR(Z → ff) and partial width is

Γf f̄ = N f
c

GFM3
Z

6
√

2π

(

g2
Af + g2

Vf

)

+ QED/QCD corrections eg. QCD: Γqq̄ → Γqq̄(1 + αs/π + · · ·)
Total width of Z

ΓZ = Γhad + 3Γ`` + Γinv = ΣΓqq̄ + 3Γ`` + NνΓνν

Comparing total width to partial width gives Nν

Cross-sections and widths correlated. Choose to fit:

• MZ, ΓZ, σ0
h

• Ratios: R0
e ≡ Γhad/Γee, R

0
µ ≡ Γhad/Γµµ, R

0
τ ≡ Γhad/Γττ

or R0
` ≡ Γhad/Γ``

• Asymmetries: A0, e
FB, A0, µ

FB and A0, τ
FB or A0, `

FB

Extra information from tagging some quark flavours (lecture 2).
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Cross-sections vs
√

s
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Lepton forward-backward asymmetries
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Ecm
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Lepton Universality

Plot A0, `
FB vs. R0

` = Γhad/Γ``. Contours contain 68% probability.

Lepton universality OK. Results agree with SM (arrows)

Mt = 174.3 ± 5.1 GeV

MH = 300+700
−186 GeV (low MH preferred)

αs(M
2
Z) = 0.118 ± 0.002

0.01

0.014

0.018

0.022

20.6 20.7 20.8 20.9

R0
l=Γhad/Γl

A
0,

l

fb

68% CL

l+l−

e+e−

µ+µ−
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αs

mt

mH

∆α

Next lecture: interpretation of asymmetries in terms of sin2 θlept
eff
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LEP combined results

Z resonance parameters - recall pre-LEP hopes:

• σ(MZ) ≈ 10 MeV (limited by beam energy precision)

• Number of generations σ(Nν) ≈ 0.2

Fitted MZ [GeV] 91.1875 ± 0.0021

ΓZ [GeV] 2.4952 ± 0.0023

σ0
h [nb] 41.540 ± 0.037

R0
` 20.767 ± 0.025

A0, `
FB 0.0171 ± 0.0010

Derived Γinv [MeV] 499.0 ± 1.5

Γhad [MeV] 1744.4 ± 2.0

Γ`` [MeV] 83.984 ± 0.086

Nν 2.984 ± 0.008

Summary - Very precise measurements of Z mass, width,

cross-sections, partial widths and lepton forward-backward

asymmetries.

High statistics data samples. Careful control of systematic errors.
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