MATTER-ANTIMATTER

 ASYMMETRY In the Standard Model and Beyond

Trieste 3 Febbraio 2010
Guido Martinelli

\Leftrightarrow Antimatter

Asymmetry

In the Standard Model and Beyond

- Antimatter in the Univers and CP
- CP, masses and weak couplings
- CP for Kaon and B mesons in the SM and beyond

- Conclusions and outlook

Relativistic
 Quantum Mechanics

Antimatter CPT Theorem

CP Violation was discovered about 37 years ago in $\mathrm{K}^{0}-\overline{\mathrm{K}}^{0}$ mixing
(weak interactions)

If not for C (Charge conjugation) and CP (C \& Parity) violation fundamental phenomena would be the same for matter \& antimatter, thus we should have a universe filled with antimatter Since antimatter annihilates matter producing an enormous quantity of energy, for example high energy photons, a diffused and massive presence of antimatter would have been already detected instead
ALL ANTIMATTER PRODUCED IN OUR LABORATORIES DOES NOT EXCEED 10^{-12} GRAMS !!!

The second step of Amstrong on the moon shows that antimatter is negligible on planetary scales

ANTIMATTER FROM COSMIC RAYS IS ABOUT $1 / 10^{5}$ OF MATTER

THE ABSENCE OF VISIBLE EXPLOSIONS

 IN THE UNIVERSE EXCLUDES THE PRESENCE OF ANTIMATTER UP TO DISTANCES OF O(20 MEGAPARSEC)(ONE PARSEC ~ 3.26 LIGHT YEARS $3.110^{18} \mathrm{~cm}$)

$$
\beta=\frac{N_{B}-N_{B}}{N_{\gamma}}=6 \times 10^{-10} \quad N_{\gamma}=412 / \mathrm{cm}^{3}
$$

In 1967 Andrei Sakharov pointed out that, for the universe to evolve from the initial matter-antimatter fireball to the present matter antimatter asymmetric state, 4 conditions must be fulfilled:

$$
\begin{aligned}
& \text { 1) Baryon number violation } \Delta \mathrm{B} \neq 0 \text { (GUT ??) } \\
& \mathrm{e}^{+}+\overline{\mathrm{d}} \rightarrow \mathrm{X} \rightarrow \mathrm{u}+\mathrm{u} \quad(\Delta(\mathrm{~B}-\mathrm{L})=0)
\end{aligned}
$$

Lepton number violation is possible but not necessary and could be zero because of the presence of a large number of antineutrinos
2) Charge symmetry violation \varnothing
$\Gamma\left(\mathrm{e}^{+}+\overline{\mathrm{d}} \rightarrow \mathrm{X} \rightarrow \mathrm{u}+\mathrm{u}\right) \neq \Gamma\left(\mathrm{e}^{-}+\mathrm{d} \rightarrow \mathrm{X} \rightarrow \overline{\mathrm{u}}+\overline{\mathrm{u}}\right)$
3) ℓ violation: the number of left handed up quarks produced by X must be different from the number of right handed up antiquarks
4) The universe was not in equilibrium when this happened, otherwise if

$$
\begin{aligned}
& \Gamma\left(\mathrm{e}^{+}+\overline{\mathrm{d}} \rightarrow \mathrm{u}+\mathrm{u}\right) \quad>\Gamma\left(\mathrm{e}^{-}+\mathrm{d} \rightarrow \overline{\mathrm{u}}+\overline{\mathrm{u}}\right) \\
& \Gamma\left(\mathrm{u}+\mathrm{u} \rightarrow \mathrm{e}^{+}+\overline{\mathrm{d})} \quad>\Gamma\left(\overline{\mathrm{u}}+\overline{\mathrm{u}} \rightarrow \mathrm{e}^{-}+\mathrm{d}\right)\right.
\end{aligned}
$$

The amount of \mathscr{C}, discovered in 1964 in mixing (see below) is however too small to explain the scarcity of antimatter in the universe.

CP Violation in the Standard Model

$$
\mathcal{L}^{\text {quarks }}=\mathcal{L}^{\text {kinetic }}+\mathcal{L}^{\text {yukawa }}+\mathcal{L}^{\text {weak int }}
$$

Mass terms are forbidden by simmetries :

$$
q_{L} \equiv\binom{u_{L}}{d_{L}} \quad u_{R} d_{R} \quad m \overline{\mathbf{q} q}=m\left(\overline{\mathbf{q}}_{L} q_{R}+\bar{q}_{R} q_{L}\right)
$$

Hermiticity guaranties CP conservation for $\mathcal{L}^{\text {weak int }}$:

$$
\begin{aligned}
& \mathcal{L}_{C C}{ }^{\text {weak int }}=\frac{\mathrm{g}_{\mathrm{W}}}{\sqrt{2}}\left(\mathrm{~J}_{\mu}^{-} \mathbf{W}_{\mu}^{+}+\mathrm{J}_{\mu}^{+} \mathbf{W}_{\mu}^{-}\right) \\
& \mathbf{J}^{+}{ }_{\mu}=\overline{\mathbf{u}} \gamma_{\mu}\left(\mathbf{1}-\gamma_{5}\right) \mathbf{d}+\ldots \\
& (\mathbf{u} \rightarrow \mathbf{c}, \mathbf{d} \rightarrow \mathbf{s})+(\mathbf{u} \rightarrow \mathbf{t}, \mathbf{d} \rightarrow \mathbf{b}) \\
& \oint \quad \begin{aligned}
\overline{\mathbf{u}} \gamma_{\mu} \mathbf{d} & \rightarrow \overline{\mathbf{u}} \gamma^{\mu} \mathbf{d} \\
\overline{\mathbf{u}} \gamma_{\mu} \gamma_{5} \mathbf{d} & \rightarrow-\overline{\mathbf{u}} \gamma^{\mu} \gamma_{5} \mathbf{d}
\end{aligned} \\
& \overline{\mathbf{u}} \gamma_{\mu} \mathbf{d} \rightarrow-\overline{\mathbf{d}} \gamma_{\mu} \mathbf{u} \\
& \bar{u} \gamma_{\mu} \gamma_{5} \mathbf{d} \rightarrow \bar{d} \gamma_{\mu} \gamma_{5} u
\end{aligned}
$$

In the Standard Model the quark mass matrix, from which the CKM Matrix and $C \not \subset$ originate, is determined by the Yukawa Lagrangian which couples fermions and Higgs

$\mathcal{L}^{\text {quarks }}=\mathcal{L}^{\text {kinetic }}+\mathcal{L}^{\text {weak int }}+\mathcal{L}^{\text {yukawa }}$

CP invariant

CP and symmetry breaking are closely related !

QUARK

FAMILIES

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{R}}=\mathrm{u}_{\mathrm{R}} \\
& \mathrm{D}_{\mathrm{R}}=\mathrm{d}_{\mathrm{R}} \\
& \mathrm{U}_{\mathrm{R}}=\mathrm{c}_{\mathrm{R}} \\
& D_{R}=S_{R} \\
& \begin{array}{l}
\sim \\
\stackrel{N}{\pi} \\
0 \\
0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { The Generations of Matter }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{R}}=\mathrm{t}_{\mathrm{R}} \\
& \mathrm{D}_{\mathrm{R}}=\mathrm{b}_{\mathrm{R}}
\end{aligned}
$$

QUARK MASSES ARE GENERATED BY DYNAMICAL SYMMETRY BREAKING
Elementary
Particles

$$
\begin{aligned}
H & =\binom{\phi^{+}}{\phi^{0}}, \quad H^{C}=i \tau_{2} H^{*} \\
\phi^{+} & \rightarrow 0 \quad \phi^{0} \rightarrow \frac{V}{\sqrt{2}} \quad \text { Charge +2/3 }
\end{aligned}
$$

$\mathcal{L}^{\text {yukawa }} \equiv \sum_{\mathrm{i}, \mathrm{k}=1, \mathrm{~N}}\left[\mathrm{Y}_{\mathrm{i}, \mathrm{k}}\left(\mathrm{q}_{\mathrm{L}}^{\mathrm{i}} \mathrm{H}^{\mathrm{C}}\right) \mathbf{U}_{\mathrm{R}}^{\mathrm{k}}\right.$

$$
\left.+X_{i, k}\left(q_{L}^{i} H\right) D_{R}^{k}+\text { h.c. }\right]
$$

Charge -1/3

$$
\begin{aligned}
& \sum_{i, k=1, N}\left[\mathrm{~m}_{\mathrm{i}, \mathrm{k}}^{\mathrm{u}}\left(\bar{u}_{\mathrm{L}}^{\mathrm{i}} \mathrm{u}_{\mathrm{R}}^{\mathrm{k}}\right)\right. \\
& \left.\quad+\mathrm{m}_{\mathrm{i}, \mathrm{k}}^{\mathrm{d}}\left(\bar{d}_{\mathrm{L}}^{\mathrm{i}} \mathrm{~d}^{\mathrm{k}}{ }_{\mathrm{R}}\right)+\mathrm{h.c.}\right]
\end{aligned}
$$

$\sum_{i, k=1, N}\left[m_{i, k}^{u}{ }_{i, \bar{u}_{L}}^{i} u_{R}^{k}\right)+m_{i, k}^{d}\left(\bar{d}_{L}^{i} d^{k}{ }_{R}\right)+$ h.c. $]$

It is easy to show the a necessary and sufficient condition for CP invariance is

$$
\mathrm{m}^{\mathrm{u}, \mathrm{~d}}{ }_{\mathrm{i}, \mathrm{k}}=\mathrm{real}
$$

1) there is no compelling symmetry for $\mathrm{m}^{\mathrm{u}, \mathrm{d}}{ }_{\mathrm{i}, \mathrm{k}}$ to be real 2) in field theory, all that may happen will happen [see below]
2) symmetries and accidental symmetries e.g. separate conservation of lepton and baryon numbers (it follows from gauge symmetry and renormalizability)

Diagonalization of the Mass Matrix

Up to singular cases, the mass matrix can always be diagonalized by 2 unitary transformations

$$
\begin{gathered}
\mathbf{M}^{\prime}=\mathbf{U}_{\mathrm{L}}^{\mathrm{i}} \rightarrow \mathbf{U}_{\mathrm{L}}^{\mathrm{ik}}{ }_{\mathrm{L}} \mathrm{u}^{\mathrm{k}} \mathbf{U}_{\mathrm{L}}
\end{gathered}
$$

$$
u_{R}^{i} \rightarrow \mathbf{U}^{i k} u_{R}^{k}{ }_{R}
$$

$$
\left(\mathbf{M}^{\prime}\right)^{\dagger}=\mathbf{U}^{\dagger}{ }_{\mathrm{R}}^{\prime}(\mathbf{M})^{\dagger} \mathbf{U}_{\mathrm{L}}
$$

$$
\mathcal{L}^{\text {mass }} \equiv m_{u p}\left(\bar{u}_{L} u_{R}+\bar{u}_{R} u_{L}\right)+m_{c h}\left(\overline{c_{L}} c_{R}+c_{R}^{-} c_{L}\right)
$$

$$
+\mathrm{m}_{\text {top }}\left(\mathrm{t}_{\mathrm{L}} \mathrm{t}_{\mathrm{R}}+\overline{\mathrm{t}}_{\mathrm{R}} \mathrm{t}_{\mathrm{L}}\right)
$$

$$
\begin{aligned}
& L_{C C}^{\text {weakint }}=\frac{g_{W}}{\sqrt{2}}\left(J_{\mu}^{-} W_{\mu}^{+}+\text {h.c. }\right) \\
& \quad \rightarrow \frac{g_{W}}{\sqrt{2}}\left(\bar{u}_{L} \mathbf{V}^{C K M} \gamma_{\mu} d_{L} W_{\mu}^{+}+\ldots\right)
\end{aligned}
$$

$\mathrm{N}(\mathrm{N}-1) / 2$
angles
and
(N-1)(N-2)/2 phases
$\mathrm{N}=3 \quad 3$ angles +1 phase KM
the phase generates complex couplings i.e. CP violation;
6 masses +3 angles +1 phase $=10$ parameters

$V_{\mathbf{u d}}$	$V_{\mathbf{u s}}$	$V_{\mathbf{u b}}$
$V_{\mathbf{c d}}$	$V_{\mathbf{c s}}$	$V_{\mathbf{c b}}$
$V_{\mathbf{t b}}$	$V_{t s}$	$V_{t b}$

NO Flavour Changing Neutral Currents (FCNC) at Tree Level

(FCNC processes are good candidates for observing NEW PHYSICS)

CP Violation is natural with three quark generations (Kobayashi-Maskawa)

With three generations all CP phenomena are related to the same unique parameter (δ)

Quark masses \& Generation Mixing

$\mathrm{c}_{\mathbf{1 2}} \mathrm{c}_{\mathbf{1 3}}$	$\mathrm{s}_{\mathbf{1 2}} \mathrm{c}_{\mathbf{1 3}}$	$\mathrm{s}_{\mathbf{1 3}} \mathrm{e}^{-\mathrm{i} \delta}$
$-\mathrm{s}_{\mathbf{1 2}} \mathrm{c}_{\mathbf{2 3}}$		
$-\mathrm{c}_{\mathbf{1 2}} \mathrm{S}_{\mathbf{2 3}} \mathrm{S}_{\mathbf{1 3}} \mathrm{e}^{\mathrm{i} \delta}$	$\mathrm{c}_{\mathbf{1 2}} \mathrm{c}_{\mathbf{2 3}}$	$-\mathrm{s}_{\mathbf{1 2}} \mathrm{S}_{\mathbf{2 3}} \mathrm{S}_{\mathbf{1 3}} \mathrm{e}^{\mathrm{i} \delta}$

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{ij}}=\operatorname{Cos} \theta_{\mathrm{ij}} \quad \mathrm{~s}_{\mathrm{ij}}=\operatorname{Sin} \theta_{\mathrm{ij}} \quad \mathrm{c}_{\mathrm{ij}} \geq 0 \quad \mathrm{~s}_{\mathrm{ij}} \geq 0 \\
& 0 \leq \delta \leq 2 \pi \quad\left|\mathrm{~s}_{12}\right| \sim \operatorname{Sin} \theta_{c}
\end{aligned}
$$

$$
\text { for small angles } \quad\left|\mathrm{I}_{\mathrm{ij}}\right| \sim\left|\mathrm{V}_{\mathrm{ij}}\right|
$$

The Wolfenstein Parametrization

$1-1 / 2 \lambda^{2}$	λ	$\mathrm{~A} \lambda^{3}(\rho-\mathrm{i} \eta)$
$-\lambda$	$1-1 / 2 \lambda^{2}$	$\mathrm{~A} \lambda^{2}$
$\mathrm{A} \lambda^{3} \times$ $(1-\rho-\mathrm{i} \eta)$	$-\mathrm{A} \lambda^{2}$	1

$\lambda \sim 0.2 A \sim 0.8 \quad \sin \theta_{12}=\lambda$
$\sin \theta_{23}=A \lambda^{2}$
$\eta \sim 0.2 \quad \rho \sim 0.3$
$\sin \theta_{13}=A \lambda^{3}(\rho-i \eta)$

The Bjorken-Jarlskog Unitarity Triangle

I V_{ij} I is invariant under phase rotations

$$
\begin{aligned}
& a_{1}=\mathbf{V}_{11} \mathbf{V}_{12}^{*}=\mathbf{V}_{\mathbf{u d}} \mathbf{V}_{\mathbf{u s}}^{*} \\
& a_{2}=\mathbf{V}_{21} \mathbf{V}_{22}^{*} a_{3}=\mathbf{V}_{31} \mathbf{V}_{32}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}+a_{2}+a_{3}=0 \\
& \left(b_{1}+b_{2}+b_{3}=0 \text { etc. }\right)
\end{aligned}
$$

Only the orientation depends a_{3} on the phase convention

Gluons and quarks

The QCD Lagrangian : $\mathcal{L}_{\text {STRONG }}=-1 / 4 \mathrm{G}_{{ }_{\mu \nu}^{A}} \mathrm{G}_{\mathrm{A}}{ }^{\mu \nu} \rightleftharpoons$ GLUONS $+\sum_{f=\text { flavour }} \bar{q}_{f}\left(i \gamma_{\mu} D_{\mu}-m_{f}\right) q_{f}$ QUARKS (\& GLUONS)

$$
\begin{aligned}
& G^{\mathrm{A}}{ }_{\mu \nu}=\partial_{\mu} \mathrm{G}^{\mathrm{A}}{ }_{\nu}-\partial_{\nu} \mathrm{G}^{\mathrm{A}}{ }_{\mu}-\mathrm{g}_{0} \mathrm{f}^{\mathrm{ABC}} \mathrm{G}^{\mathrm{B}}{ }_{\mu} \mathrm{G}^{\mathrm{C}}{ }_{\nu} \\
& \mathrm{q}_{\mathrm{f}} \equiv \mathrm{q}_{\mathrm{f} \alpha}{ }^{\mathrm{a}}{ }^{(\mathrm{x})} \quad \gamma_{\mu} \equiv\left(\gamma_{\mu}\right)^{\alpha \beta} \quad \mathrm{D}_{\mu} \equiv \partial_{\mu} \mathrm{I}+\mathrm{ig}_{0} \mathrm{t}^{\mathrm{A}}{ }_{\mathrm{ab}} \mathrm{G}^{\mathrm{A}}{ }_{\mu}
\end{aligned}
$$

$$
\begin{gathered}
\text { STRONG CP VIOLATION } \\
\mathcal{L}_{\theta}=\theta \widetilde{G}^{\mu v a} G^{a}{ }_{\mu \nu} \quad \tilde{G}^{a}{ }_{\mu \nu}=\varepsilon_{\mu v \rho \sigma} G^{a}{ }_{\rho \sigma}
\end{gathered}
$$

$$
\mathcal{L}_{\theta} \sim \theta \overrightarrow{\mathrm{E}^{\mathrm{a}}} \cdot \overrightarrow{\mathrm{~B}}^{\mathrm{a}}
$$

This term violates CP and gives a contribution to the electric dipole moment of the neutron

$$
\mathrm{e}_{\mathrm{n}}<6.310^{-26} \mathrm{e} \mathrm{~cm}
$$

$\theta<10^{-9} \quad$ which is quite unnatural !!

Neutron electric dipole moment in SuperSymmetry

$\mathcal{L}^{\Delta \mathrm{F}=0}=-\mathrm{i} / 2 \mathrm{C}_{\mathrm{e}} \bar{\psi} \sigma_{\mu \nu} \gamma_{5} \psi \mathrm{~F}^{\mu \nu}$
$\mathrm{C}_{\mathrm{e}, \mathrm{C}, \mathrm{g}}$ can be computed perturbatively
$-\mathrm{i} / 2 \mathrm{C}_{\mathrm{C}} \bar{\psi} \sigma_{\mu \nu} \gamma_{5} \mathrm{t}^{\mathrm{a}} \psi \mathrm{G}^{\mu \nu \mathrm{a}}$
$-1 / 6 \mathrm{C}_{\mathrm{g}} \mathrm{f}_{\mathrm{abc}} \mathrm{G}^{\mathrm{a}}{ }_{\mu \rho} \mathrm{G}^{\mathrm{b} \mathrm{\rho}}{ }_{v} \mathrm{G}^{\mathrm{c}}{ }_{\lambda \sigma} \varepsilon^{\mu \nu \lambda \sigma}$

Consequences of a Symmetry

$$
\left[S, \mathscr{F}^{f}\right]=0 \rightarrow|E, p, s\rangle
$$

We may find states which are simultaneously eigenstates of S and of the Energy

$$
\begin{gathered}
\left.\left.C P / \mathrm{K}_{1}^{0}\right\rangle=+/ \mathrm{K}_{1}^{0}\right\rangle \\
\left.\left.C P / \mathrm{K}_{2}^{0}\right\rangle=-/ \mathrm{K}_{2}^{0}\right\rangle \\
\left\langle\pi \pi / \mathrm{K}_{1}^{0}\right\rangle \neq 0 \\
\left\langle\pi \pi / \mathrm{K}_{2}^{0}\right\rangle=0
\end{gathered}
$$

$$
\left.\left.\left./ \mathrm{K}_{\mathrm{S}, \mathrm{~L}}{ }^{0}\right\rangle=\alpha / \mathrm{K}_{1}^{0}\right\rangle+\beta / \mathrm{K}_{2}^{0}\right\rangle
$$

if CP is conserved either $\alpha=0$ or $\beta=0$

CX Violation in the Neutral Kaon System

Expanding in several "small" quantities

$$
\begin{aligned}
& \eta^{00}=\frac{\left\langle\pi^{0} \pi^{0}\right| \mathscr{F}_{\mathrm{W}}\left|\mathrm{~K}_{\mathrm{L}}\right\rangle}{\left\langle\pi^{0} \pi^{0}, \mathscr{F}_{\mathrm{W}} \mid \mathrm{K}_{\mathrm{S}}\right\rangle} \sim \varepsilon-2 \varepsilon^{\prime} \\
& \eta^{+-}=\frac{\left\langle\pi^{+} \pi^{-}, \mathscr{F}_{\mathrm{W}} \mid \mathrm{K}_{\mathrm{L}}\right\rangle}{\left\langle\pi^{+} \pi^{-}, \mathscr{F}_{\mathrm{W}} \mid \mathrm{K}_{\mathrm{S}}\right\rangle} \sim \varepsilon+\varepsilon^{\prime}
\end{aligned}
$$

Conventionally: $\quad\left|\mathrm{K}_{\mathrm{S}}\right\rangle=\mid \mathrm{K}_{1}{ }^{\prime}{ }_{\mathrm{CP}=+1}+\varepsilon / \mathrm{K}_{2}{ }^{\prime}{ }_{\mathrm{CP}=-1}$

$$
\left|\mathrm{K}_{\mathrm{L}}\right\rangle=\left|\mathrm{K}_{2}\right\rangle_{\mathrm{CP}=-1}+\varepsilon\left|\mathrm{K}_{1}\right\rangle_{\mathrm{CP}=+1}
$$

Indirect CP violation: mixing

π

$$
\left|\mathrm{K}_{\mathrm{L}}\right\rangle=\left\lvert\, \mathrm{K}_{2}>\mathbf{C P}=-1 \quad \begin{gathered}
\\
\end{gathered}\right.
$$

Box diagrams:
They are also responsible
Complex $\Delta S=2$ effective coupling
for $\mathrm{B}^{0}-\bar{B}^{0}$ mixing

$$
\Delta m_{\mathcal{d}, \mathrm{s}}
$$

$B^{0}-B^{0}$ mixing

$$
\begin{aligned}
& H=\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right) \\
& \Delta B=2 \text { Transitions } \\
& \propto \quad\left(\bar{d} \gamma_{\mu}\left(1-\gamma_{s}\right) \mathbf{b}\right)^{2} \quad \text { Hadronic matrix } \\
& \text { element } \\
& \text { CuM } \\
& \Delta m_{d, s}=\frac{\mathrm{G}_{\mathrm{F}}^{2} \mathrm{M}_{\mathrm{W}}^{2}}{16 \pi^{2}} \mathrm{~A}^{2} \lambda^{6} \mathrm{~F}_{\mathrm{tt}}\left(\frac{\mathrm{~m}_{\mathrm{t}}^{2}}{\mathrm{M}_{\mathrm{W}}^{2}}\right)^{<\boldsymbol{O}}>
\end{aligned}
$$

Direct CP violation: decay

π

$$
\mathrm{CP}=+1
$$

Complex $\Delta S=1$ effective coupling

$$
\mathcal{L}^{\mathrm{CP}}=\mathcal{L}^{\Delta \mathrm{F}=0}+\mathcal{L}^{\Delta \mathrm{F}=1}+\mathcal{L}^{\Delta \mathrm{F}=2}
$$

$\boldsymbol{\Delta F}=\mathbf{0} \quad \mathrm{d}_{\mathrm{e}}<1.510^{-27}$ e cm $\quad \mathrm{d}_{\mathcal{N}}<6.310^{-26}$ e cm

$\Delta \mathrm{F}=1$
 ह'/ ε

$\Delta \mathrm{F}=2$
$\varepsilon \quad$ and
$B \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}$

Observed

Genuine FCNC

Exp

$$
\begin{array}{ll}
2.271 \pm 0.01710^{-3} & \eta(1-\rho) \mathrm{B}_{\mathrm{K}} \\
17.2 \pm 1.810^{-4} & \mathbf{- 7} \div \mathbf{3 0} 10^{-4}
\end{array}
$$

$\Delta \mathrm{M}_{\mathrm{s}} / \Delta \mathrm{M}_{\mathrm{d}}$
17.77 ± 0.12
$0.507 \pm 0.005 \mathrm{ps}^{-1} \quad\left[(1-\rho)^{2}+\eta^{2}\right]^{-1} \xi$
$\operatorname{BR}\left(\mathrm{B} \quad \mathrm{X}_{\mathrm{s}} \gamma\right)$
$\operatorname{BR}\left(\mathrm{K}^{+} \quad \pi^{+} v v\right)$
3.11 ± 0.3910^{-4}
$1.5+3.4-1.210^{-10}$
3.50 ± 0.5010^{-4}
$0.8 \pm 0.310^{-\mathbf{1 0}}$

Visualization of the unitarity of the CKM matrix

Unitarity Triangle in the $(\rho-\eta)$ plane

From

A. Stocchi ICHEP 2002

$$
\begin{array}{ccc}
\text { Measure } & V_{C K M} & \text { Other NP parameters } \\
\Gamma(b \rightarrow u) / \Gamma(b \rightarrow c) & \bar{\rho}^{2}+\bar{\eta}^{2} & \bar{\Lambda}, \lambda_{1}, F(1), \ldots \\
\varepsilon_{K} & \eta[(1-\bar{\rho})+\ldots] & B_{K} \\
\Delta m_{d} & (1-\bar{\rho})^{2}+\bar{\eta}^{2} & f_{B_{d}}^{2} B_{B_{d}} \\
\Delta m_{d} / \Delta m_{1} & (1-\bar{\rho})^{2}+\bar{\eta}^{2} & \xi \\
A_{C P}\left(B_{d} \rightarrow J / \psi K_{s}\right) & \sin 2 \beta & -
\end{array}
$$

For details see:

UTfit Collaboration

hep-ph/0501199 hep-ph/0509219 hep-ph/0605213 hep-ph/0606167
$Q^{E X P}=V_{C K M} \times\left\langle H_{F}\right| \hat{O}\left|H_{I}\right\rangle$

$\sin 2 \beta$ is measured directly from $\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}$ decays at Babar \& Belle

$$
\mathcal{A}_{\mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}}=\frac{\Gamma\left(\mathrm{B}_{\mathrm{d}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}, \mathrm{t}\right)-\Gamma\left(\overline{\mathrm{B}}_{\mathrm{d}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}, \mathrm{t}\right)}{\Gamma\left(\mathrm{B}_{\mathrm{d}}{ }^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}, \mathrm{t}\right)+\Gamma\left(\overline{\mathrm{B}}_{\mathrm{d}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}, \mathrm{t}\right)}
$$

$$
A_{\mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}}=\sin 2 \beta \quad \sin \left(\Delta m_{\alpha_{\alpha}} \mathrm{t}\right)
$$

DIFFERENT LEVELS OF THEORETICAL UNCERTAINTIES (STRONG INTERACTIONS)

1) First class quantities, with reduced or negligible theor. uncertainties

$$
\begin{gathered}
A_{C P}\left(B \rightarrow J / \psi K_{s}\right) \quad \gamma \quad \text { from } B \rightarrow D K \\
K^{0} \rightarrow \pi^{0} v \bar{v}
\end{gathered}
$$

2) Second class quantities, with theoretical errors of $\mathrm{O}(10 \%)$ or less that can be reliably estimated

$$
\begin{aligned}
\varepsilon_{K} & \Delta M_{d s} \\
\Gamma(B \rightarrow c, u), & K^{+} \rightarrow \pi^{+} v \bar{v}
\end{aligned}
$$

3) Third class quantities, for which theoretical predictions are model dependent (BBNS, charming, etc.)
In case of discrepacies we cannot tell whether is new physics or we must blame the model

$$
\begin{array}{ll}
B \rightarrow K \pi & B \rightarrow \pi^{0} \pi^{0} \\
B \rightarrow \phi K_{s} &
\end{array}
$$

Classical Quantities used in the Standard UT Analysis

$\Delta \mathbf{m}_{\mathrm{d}} / \Delta \mathbf{m}_{\mathrm{s}}$

Inclusive vs Exclusive Opportunity for lattice QCD see later

before only a lower bound

New Quantities used in the UT Analysis

UTAMGLES

Several new determinations of UT angles are now available, thanks to the results coming from the B-Factory experiments

New bounds are available from rare B and K decays. They do not still have a strong impact on the global fit and they are not used at present.

THE COLLABORATION
M.Bona, M.Ciuchini, E.Franco, V.Lubicz,
G.Martinelli, F.Parodi,M.Pierini, P.Roudeau, C.Schiavi,L.Silvestrini,
V. Sordini, A.Stocchi, V.Vagnoni

Roma, Genova, Annecy, Orsay, Bologna

2006 ANALYSIS

- New quantities e.g. B \rightarrow DK included
- Upgraded exp. numbers (after ICHEP)
- CDF \& Belle new measurements
www.utfit.org

Results for ρ and η \& related quantities

With the constraint from $\Delta \mathrm{m}_{\mathrm{s}}$

contours@
 68\% and 95\% C.L.

$$
\rho=0.147 \pm 0.029
$$

$$
\eta=0.342 \pm 0.016
$$

$$
\begin{gathered}
\alpha=(91 \pm 8)^{0} \\
\sin 2 \beta=0.690 \pm 0.023 \\
\gamma=(66.7 \pm 6.4)^{0}
\end{gathered}
$$

A closer look to the analysis:

1) Predictions vs Postdictions
2) Lattice vs angles
3) $\mathbf{V}_{u b}$ inclusive, $V_{u b}$ exclusive vs $\sin 2 \beta \bigcirc$
4) Experimental determination of lattice parameters

V_{UB} PUZZLE

$\left\|V_{u b}\right\| \times 10^{4}$	excl.	35.0	4.0	Lattice QCDSR
$\left\|V_{u b}\right\| \times 10^{4}$	incl.	44.9	3.3	HQET + Model
$\left\|V_{u b}\right\| \times 10^{4}$	average	40.9	2.5	

Inclusive: uses non perturbative parameters most not from lattice QCD (fitted from the lepton spectrum)
$\bar{\Lambda} \quad \lambda_{1} \sim \frac{\bar{b} \vec{D}^{2} b}{2 m_{b}} \quad \lambda_{2} \sim \frac{\bar{b} \sigma_{\mu N} G^{\mu \nu} b}{2 m_{b}}$
Exclusive: uses non perturbative form factors from LQCD and QCDSR

$$
f^{+}\left(q^{2}\right) \quad V\left(q^{2}\right) \quad A_{1,2}\left(q^{2}\right)
$$

Tension between inclusive Vub Tension between inclusive Vub and the reststine the tit

\mathbf{V}_{UB} PUZZLE

Khodjamirian

Recent $\left|V_{u b}\right|$ determinations from $B \rightarrow \pi l \nu_{l}$

[ref.]	$f_{B \pi}^{+}\left(q^{2}\right)$ calculation	$f_{B \pi}^{+}\left(q^{2}\right)$ input	$\left\|V_{u b}\right\| \times 10^{3}$
Okamoto et al.	lattice $\left(n_{f}=3\right)$	-	$3.78 \pm 0.25 \pm 0.52$
HPQCD	lattice $\left(n_{f}=3\right)$	-	$3.55 \pm 0.25 \pm 0.50$
Arnesen et al.	-	lattice \oplus SCET	$3.54 \pm 0.17 \pm 0.44$
BecherHill	-	lattice	$3.7 \pm 0.2 \pm 0.1$
Flynn et al	-	lattice \oplus LCSR	$3.47 \pm 0.29 \pm 0.03$
Ball, Zwicky	LCSR	-	$3.5 \pm 0.4 \pm 0.1$
this work	LCSR	-	$3.5 \pm 0.4 \pm 0.2 \pm 0.1$

\mathbf{V}_{UB} PUZZLE

Beneke CERN ‘08

$\left|V_{u b}\right|$ crisis (about to be resolved?)

- $\left|V_{u b}\right| f_{+}^{B \pi}(0)=(9.1 \pm 0.6 \pm 0.3) \times 10^{-4}$ from semileptonic $B \rightarrow \pi l \nu$ spectrum + form factor extrapolation (Ball, 2006) Also lattice results (HPQCD) tend to small values.
- $\left|V_{u b}\right| f_{+}^{B \pi}(0)=(8.1 \pm 0.4(?)) \times 10^{-4}$ from $B \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{0}, \pi \rho, \ldots+$ factorization (MB, Neubert, 2003; Arnesen et al, 2005; MB, Jäger, 2005)
$\Longrightarrow\left|V_{u b}\right| \simeq 3.5 \times 10^{-4}$, in contrast to determination from moments of inclusive $b \rightarrow u \ell \nu$ decay, which was $\left|V_{u b}\right| \simeq(4.5 \pm 0.3) \times 10^{-4}$

But: according to (Neubert, LP07) $\left|V_{u b}\right| \simeq(3.7 \pm 0.3) \times 10^{-4}$ after reevaluation of m_{b} input and omitting $B \rightarrow X_{s} \gamma$ moments!

Hadronic Parameters

From UTfit

1) Predictions vs Postdictions

2) Lattice vs angles
3) $\mathbf{V}_{u b}$ inclusive, $V_{u b}$ exclusive vs $\sin 2 \beta$
4) Experimental determination of lattice parameters

IMPACT of the NEW MEASUREMENTS on LATTICE HADRONIC PARAMETERS

$$
f_{B_{s}} \hat{B}_{B_{s}}^{1 / 2} \quad \xi \quad \hat{B}_{K}
$$

Comparison between experiments and theory

exps vs predictions

$$
\mathrm{f}_{\mathrm{Bs}} \sqrt{ } \mathrm{~B}_{\mathrm{Bs}}=270 \pm 30 \mathrm{MeV}
$$

lattice

$$
\mathrm{f}_{\mathrm{Bs}} \sqrt{ } \mathrm{~B}_{\mathrm{Bs}}=265 \pm 4 \mathrm{MeV}
$$

$$
\xi=1.21 \pm 0.04
$$

lattice

$$
\mathrm{B}_{\mathbf{K}}=0.75 \pm 0.07 \quad \mathrm{~B}_{\mathbf{K}}=0.75 \pm 0.07
$$

V. Lubicz and
C. Tarantino

SPECTACULAR AGREEMENT (EVEN WITH QUENCHED LATTICE QCD)

OLD

beyond the SM (Supersymmetry)

Spin 1/2
$\mathrm{q}_{\mathrm{L}}, \mathrm{u}_{\mathrm{R}}, \mathrm{d}_{\mathrm{R}}$
$\mathrm{l}_{\mathrm{L}}, \mathrm{l}_{\mathrm{R}}$

Spin $0 \quad$ SQuarks

$$
\mathrm{Q}_{\mathrm{L}}, \mathrm{U}_{\mathrm{R}}, \mathrm{D}_{\mathrm{R}}
$$

SLeptons L_{L}, E_{R}

Spin 1 Gauge bosons W, Z, γ, g

Spin 0 Higgs bosons
$\mathrm{H}_{1}, \mathrm{H}_{2}$
Spin 1/2 Gauginos
w, z , $\tilde{\gamma}, \tilde{g}$

Spin $1 / 2$
Higgsinos
$\tilde{H}_{1}, \tilde{H}_{2}$

Only tree level processes Vub/Vcb and B-> DK(*)

$Q^{E X P}=V_{\text {CKM }}\langle F| \hat{O}|I\rangle$

$$
Q^{E X P}=\sum_{i} C_{S M}^{i}\left(M_{W}, m_{t}, \alpha_{s}\right)\langle F| \hat{O}_{i}|I\rangle+\sum_{i^{\prime}} C_{\text {Beyond }}^{i^{\prime}}\left(\tilde{m}_{\beta}, \alpha_{s}\right)\langle F| \hat{O}_{i^{\prime} \mid}|I\rangle
$$

In general the mixing mass matrix of the SQuarks (SMM) is not diagonal in flavour space analogously to the quark case We may either Diagonalize the SMM
FCNC $\underbrace{}_{\mathrm{q}_{\mathrm{L}}{ }^{\mathrm{z}, \tilde{\gamma}, \tilde{\mathrm{g}}} \mathrm{Q}_{\mathrm{i}}^{\mathrm{L}}}$
or Rotate by the same matrices
the SUSY partners of
the u- and d- like quarks
$\left(Q_{\mathrm{L}}\right)^{\prime}=\mathrm{U}_{\mathrm{ij}}^{\mathrm{L}} \mathrm{Q}_{\mathrm{L}}{ }_{\mathrm{j}}$

In the latter case the Squark Mass Matrix is not diagonal

a)

b)

c)

$\left(m^{2} Q_{Q}\right)_{i j}=m^{2}{ }_{\text {average }} \mathbf{1}_{i j}+\Delta \mathcal{L}_{i j}^{2} \quad \delta_{i j}=\Delta \mathcal{L}_{i j}^{2} / \mathcal{L}^{2}{ }_{\text {average }}$

New local four-fermion operators are generated

$$
\begin{aligned}
& \mathrm{Q}_{1}=\left(\overline{\mathrm{s}}_{\mathrm{L}}{ }^{\mathrm{A}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{A}}\right)\left(\overline{\mathrm{s}}_{\mathrm{L}}{ }^{\mathrm{B}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}{ }^{\mathrm{B}}\right) \\
& \mathrm{Q}_{2}=\left(\overline{\mathrm{s}}_{\mathrm{R}}{ }^{\mathrm{A}} \mathrm{~d}_{\mathrm{L}}{ }^{\mathrm{A}}\right)\left(\overline{\mathrm{s}}_{\mathrm{R}}{ }^{\mathrm{B}} \mathrm{~d}_{\mathrm{L}}{ }^{\mathrm{B}}\right) \\
& \mathrm{Q}_{3}=\left(\overline{\mathrm{s}}_{\mathrm{R}}{ }^{\mathrm{A}} \mathrm{~d}_{\mathrm{L}}{ }^{\mathrm{B}}\right)\left({\left.\overline{\bar{S}_{R}}{ }^{\mathrm{B}} \mathrm{~d}_{\mathrm{L}}{ }^{\mathrm{A}}\right)}^{\mathrm{B}}\right. \text {) } \\
& \mathrm{Q}_{4}=\left(\overline{\mathrm{s}}_{\mathrm{R}}{ }^{\mathrm{A}} \mathrm{~d}_{\mathrm{L}}{ }^{\mathrm{A}}\right)\left(\overline{\mathrm{s}}_{\mathrm{L}}{ }^{\mathrm{B}} \mathrm{~d}_{\mathrm{R}}{ }^{\mathrm{B}}\right) \\
& \mathrm{Q}_{5}=\left(\overline{\mathrm{s}}_{\mathrm{R}}{ }^{\mathrm{A}} \mathrm{~d}_{\mathrm{L}}{ }^{\mathrm{B}}\right)\left(\overline{\mathrm{s}}_{\mathrm{L}}{ }^{\mathrm{B}} \mathrm{~d}_{\mathrm{R}}{ }^{\mathrm{A}}\right) \\
& + \text { those obtained by } \mathrm{L} \leftrightarrow \mathrm{R}
\end{aligned}
$$

Similarly for the b quark e.g.
$\left(\bar{b}_{R}{ }^{A} d_{L}{ }^{A}\right)\left(\bar{b}_{R}{ }^{B} d_{L}{ }^{B}\right)$

B_{s} mixing , a road to New Physics (NP)?

The Standard Model contribution to CP violation in B_{s} mixing is well predicted and rather small

- $\sin 2 \beta_{s}=0.037 \pm 0.002$ (SM or MFV)
- $\sin 2 \beta_{s}=0.041 \pm 0.004$ (Arbitrary NP)

The phase of the mixing amplitudes can be extracted from $\mathrm{B}_{\mathrm{s}}->\mathrm{J} / \Psi \varphi$ with a relatively small th. uncertainty. A phase very different from 0.04 implies NP in B_{s} mixing

Main Ingredients and General Parametrizations

$$
H^{\Delta F=2}=\hat{m}-\frac{i}{2} \hat{\Gamma} \quad A=\hat{m}_{12}=\langle\bar{M}| \hat{m}|M\rangle \quad \Gamma_{12}=\langle\bar{M}| \hat{\Gamma}|M\rangle
$$

Neutral Kaon Mixing

$$
\operatorname{Re} A_{K}=C_{\Delta m_{K}} \operatorname{Re} A_{K}^{S M} \quad \operatorname{Im} A_{K}=C_{\varepsilon} \operatorname{Im} A_{K}^{S M}
$$

B_{d} and B_{s} mixing

$$
A_{q} e^{2 i \phi_{q}} \equiv C_{B_{q}} e^{2 i \phi_{B_{q}}} \times A_{q}^{S M} e^{2 i \phi_{q}^{S M}}=\left(1+\frac{A_{q}^{N P}}{A_{q}^{S M}} e^{2 i\left(\phi_{q}^{N P}-\phi_{q}^{S M}\right)}\right) \times A_{q}^{S M} e^{2 i \phi_{q}^{S M}}
$$

$$
C_{B_{s}} e^{2 i \phi_{B_{s}}}=\frac{A_{s}^{S M} e^{-2 i \beta_{s}}+A_{s}^{N P} e^{2 i\left(\phi_{s}^{N P}-\beta_{s}\right)}}{A_{s}^{S M} e^{-2 i \beta_{s}}}=\frac{\left\langle\bar{B}_{s}\right| H_{e f}^{f u l}\left|B_{s}\right\rangle}{\left\langle\bar{B}_{s}\right| H_{e f f}^{S M}\left|B_{s}\right\rangle}
$$

$$
\begin{aligned}
& \frac{\Gamma_{12}^{q}}{A_{q}}=-2 \frac{\kappa}{C_{B_{q}}}\left\{e^{i 2 \phi_{B_{q}}}\left(n_{1}+\frac{n_{6} B_{2}+n_{11}}{B_{1}}\right)-\frac{e^{i\left(\phi_{q}^{\mathrm{S}}+2 \phi_{B_{q}}\right)}}{R_{t}^{q}}\left(n_{2}+\frac{n_{7} B_{2}+n_{12}}{B_{1}}\right)\right. \\
& +\frac{e^{i 2\left(\mathrm{O}_{q}^{\mathrm{SM}}+\mathrm{Q}_{B_{q}}\right)}}{R_{t}^{q^{2}}}\left(n_{3}+\frac{n_{8} B_{2}+n_{13}}{B_{1}}\right)+e^{i\left(\phi_{q}^{\mathrm{pm}}+2 \phi_{B_{q}}\right)} C_{q}^{\mathrm{Pen}}\left(n_{4}+n_{9} \frac{B_{2}}{B_{1}}\right)
\end{aligned}
$$

$\mathrm{C}_{\mathrm{q}}{ }^{\text {Pen }}$ and $\phi_{\mathrm{q}}{ }^{\text {Pen }}$ parametrize possible NP contributions to $\Gamma^{\mathrm{q}}{ }_{12}$ from b -> s penguins

SM		$S M+N P$
$\begin{gathered} \left(\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right)^{\mathrm{SM}} \\ \gamma^{\mathrm{SM}} \end{gathered}$	tree level	$\begin{gathered} \left(\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right)^{\mathrm{SM}} \\ \gamma^{\mathrm{SM}} \end{gathered}$
$\begin{gathered} \beta^{S M} \\ \alpha^{S M} \\ \Delta m_{d} \end{gathered}$	Bd Mixing	$\begin{gathered} \beta^{S M}+\phi_{\mathrm{Bd}} \\ \alpha^{\mathrm{SM}}-\phi_{\mathrm{Bd}} \\ \mathrm{C}_{\mathrm{Bd}} \Delta \mathrm{~m}_{\mathrm{d}} \end{gathered}$
$\begin{aligned} & \Delta m_{s}^{s M} \\ & -\beta_{s}{ }^{\text {sM }} \end{aligned}$	Bs Mixing	$\begin{aligned} & C_{B s} \Delta m_{s}{ }^{\text {SM }} \\ - & \beta_{\mathrm{s}}{ }^{\mathrm{SM}}+\phi_{\mathrm{Bs}} \end{aligned}$
$\begin{aligned} & \varepsilon_{\mathrm{K}}{ }^{\mathrm{SM}} \\ & \Delta \mathrm{~m}_{\mathrm{K}}{ }^{\mathrm{SM}} \end{aligned}$	K Mixing	$\begin{array}{r} \mathrm{C}_{\varepsilon_{K}} \varepsilon_{K}{ }^{\mathrm{SM}} \\ \mathrm{C}_{\Delta \mathrm{mK}} \Delta \mathrm{~m}_{\mathrm{K}}{ }^{\mathrm{SM}} \end{array}$

Physical observables

$$
\Delta m_{s}=\left|A_{s}\right|=C_{B_{s}} \Delta m_{s}^{S M}
$$

$$
2 \phi_{s}=-\arg A_{s}=2\left(\beta_{s}-\phi_{B_{s}}\right)
$$

$$
A_{S L}^{s}=\frac{\Gamma\left(\bar{B}_{s} \rightarrow l^{+} X\right)-\Gamma\left(B_{s} \rightarrow l^{-} X\right)}{\Gamma\left(\bar{B}_{s} \rightarrow l^{+} X\right)+\Gamma\left(B_{s} \rightarrow l^{-} X\right)}=\operatorname{Im}\left(\frac{\Gamma_{12}^{s}}{A_{s}}\right)
$$

$$
\begin{aligned}
& A_{S L}^{\mu \mu}=\frac{f_{d} \chi_{d 0} A_{S L}^{d}+f_{s} \chi_{s 0} A_{S L}^{s}}{f_{d} \chi_{d 0}+f_{s} \chi_{s 0}} \\
& \frac{\Delta \Gamma_{s}}{\Delta m_{s}}=\operatorname{Re}\left(\frac{\Gamma_{12}^{s}}{A_{s}}\right) \quad \tau_{B_{s}}^{F S}=\frac{1}{\Gamma_{S}} \frac{1+\left(\Delta \Gamma_{s} / 2 \Gamma_{s}\right)^{2}}{1-\left(\Delta \Gamma_{s} / 2 \Gamma_{s}\right)^{2}}
\end{aligned}
$$

Utfit 0707.0636

The two solutions for ϕ_{s} correspond to two regions for $A_{s}{ }^{N P}$ and $\phi_{s}{ }^{\text {NP: }}$ $A_{s}{ }^{\text {NP }} / A_{s}^{S M}=0.6 \pm 0.4 \& \phi_{N P}=(123 \pm 10)^{\circ}$ requires $N P$ with new $A_{s}{ }^{N P} / A_{s}^{S M}=1.8 \pm 0.1 \& \phi_{N P}=(100 \pm 3)^{\circ}$ sources of CP violation!

* chirality-flipping mass insertions are strongly bounded by b -> s γ : they are too small to produce the measured ϕ_{s} case \#1: single mass insertion, e.g. $\left(\delta_{23}\right)_{L L}$
* large MI needed for ϕ_{s} : tension with b-> $s \gamma$
* MI saturates at 1 : upper bound $\tilde{m}<O(1 \mathrm{TeV})$ * huge effect in b->s penguins

case \#2: double mass insertion, $\left(\delta_{23}\right)_{L L} \&\left(\delta_{23}\right)_{R R}$

* large effects in b->s penguins still possible (larger if LR MIs are also switched on)
$b \rightarrow s \gamma$ is no longer a problem

$b \Rightarrow s \& \tau \Rightarrow \mu \gamma$ in SUSY GUTS

When SUSY is broken at a scale larger than $\mathrm{M}_{\text {GUT }}$ SQuark and SLepton masses unify including the non-diagonal coupling $\left(\delta_{i j}\right)_{L L},\left(\delta_{i j}\right)_{R R}$

The following relations holds at M_{Z} (Ciuchini et al. hep-ph/0307191)

$$
\left(\delta_{i j}^{d}\right)_{R R} \simeq \frac{m_{L}^{2}}{m_{D}^{2}}\left(\delta_{i j}^{l}\right)_{L L}
$$

$$
\left(\delta_{i j}^{u}\right)_{R R} \simeq \frac{m_{E}^{2}}{m_{U}^{2}}\left(\delta_{i j}^{l}\right)_{L L}
$$

$$
\left(\delta_{i j}^{d}\right)_{L R} \simeq \frac{m_{L_{\text {eve }}}^{2}}{m_{Q_{\text {ave }}}^{2}} \frac{m_{b}}{m_{\tau}}\left(\delta_{i j}^{l}\right)_{R L}^{*}
$$

$b \Rightarrow s \& \tau \Rightarrow \mu \gamma$ in SUSY GUTS

mass insertion analysis in a SUSY-GUT scheme * RG-induced $\left(\delta_{23}\right)_{L L}$

* explicit $\left(\delta_{23}\right)_{R R}$

Limits from Belle and Babar < $4.5 \& 6.810^{-8}$

In the UTfit range for the B_{s}

 mixing phase:$\mathrm{BR}(\tau \rightarrow \mu \gamma)>3 \times 10^{-9}!!$

CONCLUSIONS: THANKS TO EXPERIMENTAL MEASUREMENTS \mathcal{Z} improved lattice calculations

UTA in the SM: 2007 vs 2015

$$
\sigma(\bar{\rho}) / \bar{\rho}=20 \%
$$

$$
\sigma(\bar{\rho}) / \bar{\rho}=1.3 \%
$$

$$
\sigma(\bar{\eta}) / \bar{\eta}=0.8 \%
$$

CONCLUSIONS

The evidence (strong suggestion, hint, ..) of a large Bs mixing phase survives to a second run of measurements

The upgraded UTFit analysis gives a 2.9σ deviation from the SM (new CDF measurements still to be included)

In this framework MFV ruled out; MSSM could work with $L L$ and $R R$ insertions without conflict with $b->s \gamma$

Within SUSY GUT a large $\operatorname{BR}(\tau->\mu \gamma)$ is expected

