MATTER-ANTIMATTER ASYMMETRY In the Standard Model and Beyond

DIPARTIMENTO DI FISICA

Trieste 3 Febbraio 2010

Guido Martinelli

Matter ⇔ Antimatter Asymmetry In the Standard Model and Beyond

- Antimatter in the Univers and CP
 CP, masses and weak couplings
 CP for Kaon and B mesons in the SM and beyond
 - Conclusions and outlook

CP Violation was discovered about 37 years ago in K⁰ - K⁰ mixing (weak interactions)

If not for C (Charge conjugation) and CP (C & Parity) violation fundamental phenomena would be the same for matter & antimatter, thus <u>we should have a universe filled with antimatter</u> Since antimatter annihilates matter producing an enormous quantity of energy, for example high energy photons, <u>a diffused and</u> <u>massive presence of antimatter would have been already detected</u> instead ALL ANTIMATTER PRODUCED IN OUR LABORATORIES DOES NOT EXCEED 10⁻¹² GRAMS !!!

The second step of Amstrong on the moon shows that antimatter is negligible on planetary scales

ANTIMATTER FROM COSMIC RAYS IS ABOUT 1/10⁵ OF MATTER

THE ABSENCE OF VISIBLE EXPLOSIONS IN THE UNIVERSE **EXCLUDES THE PRESENCE OF** ANTIMATTER **UP TO DISTANCES OF** O(20 MEGAPARSECS) (ONE PARSEC ~ 3.26 LIGHT YEARS $3.1 \ 10^{18} \ \mathrm{cm}$)

$$\beta = \frac{N_{B} - N_{B}}{N_{\gamma}} = 6 \times 10^{-10}$$

$$N_{\gamma} = 412 / \text{cm}^{3}$$

In 1967 Andrei Sakharov pointed out that, for the universe to evolve from the initial matter-antimatter fireball to the present matter antimatter asymmetric state, 4 conditions must be fulfilled: 1) Baryon number violation $\Delta B \neq 0$ (GUT ??) $e^+ + \overline{d} \rightarrow X \rightarrow u + u \qquad (\Delta (B-L) = 0)$ Lepton number violation is possible but not necessary and could be zero because of the presence of a large number of antineutrinos 2) Charge symmetry violation \checkmark $\Gamma(e^{+} + d \rightarrow X \rightarrow u + u) \neq \Gamma(e^{-} + d \rightarrow X \rightarrow u + u)$ 3) *P* violation: the number of left handed up quarks produced by X must be different from the number of right handed up antiquarks 4) The universe was not in equilibrium when this happened, otherwise if $\Gamma(e^+ + d \rightarrow u + u) > \Gamma(e^- + d \rightarrow u + u)$ then also

 $\Gamma(u + u \rightarrow e^{+} + \overline{d}) > \Gamma(\overline{u} + \overline{u} \rightarrow e^{-} + d)$

The amount of \mathcal{P} , discovered in 1964 in mixing (see below) is however too small to explain the scarcity of antimatter in the universe.

CP Violation in the Standard Model

$$\mathcal{L}^{\text{quarks}} = \mathcal{L}^{\text{kinetic}} + \mathcal{L}^{\text{yukawa}} + \mathcal{L}^{\text{weak int}}$$

Mass terms are forbidden by simmetries :

$$q_{L} \equiv \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} u_{R} d_{R} = m \left(\overline{q}_{L} q_{R} + \overline{q}_{R} q_{L} \right)$$

Hermiticity guaranties CP conservation for $\mathcal{L}^{\text{weak int}}$:

C ū	$\gamma_{\mu} d \rightarrow - \overline{d} \gamma_{\mu}$	ν _μ u ū	$\overline{\gamma}_{\mu}\gamma_{5} d \rightarrow$	$\overline{\mathbf{d} \gamma_{\mu}} \gamma_5 \mathbf{u}$
-----	--	--------------------	---	--

In the Standard Model the quark mass matrix, from which the CKM Matrix and CP originate, is determined by the Yukawa Lagrangian which couples fermions and Higgs

charm

S

strange

muon

top

bottom

tau

$$\begin{aligned} & \text{GUARK MASSES ARE GENERATED} \\ & \text{BUSINGS} \\ & H = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \quad H^C = i\tau_2 H^* \\ & \phi^+ \to 0 \quad \phi^0 \to \frac{V}{\sqrt{2}} \quad \text{Charge + 2/3} \\ & \text{Charge + 2/3} \\ & \text{Charge - 1/3} \\ \end{aligned} \\ \begin{aligned} & \text{Figure 1} \\ & \text{Substitution 1} \\ & \text{Charge - 1/3} \\ \end{aligned} \\ \begin{aligned} & \text{Substitution 2} \\ & \text{Charge - 1/3} \\ \end{aligned} \\ \begin{aligned} & \text{Substitution 2} \\ & \text{Subs$$

3) symmetries and accidental symmetries e.g. separate conservation of lepton and baryon numbers (it follows from gauge symmetry and renormalizability)

Diagonalization of the Mass Matrix

Up to singular cases, the mass matrix can always be diagonalized by 2 unitary transformations $u^{i}_{L} \rightarrow U^{ik}_{L} u^{k}_{L} \qquad u^{i}_{R} \rightarrow U^{ik}_{R} u^{k}_{R}$ $\mathbf{M'} = \mathbf{U}^{\dagger}_{L} \mathbf{M} \mathbf{U}_{R} \qquad (\mathbf{M'})^{\dagger} = \mathbf{U}^{\dagger}_{R} (\mathbf{M})^{\dagger} \mathbf{U}_{L}$ $\int mass = m_{up} (\overline{u}_{L} u_{R} + \overline{u}_{R} u_{L}) + m_{ch} (\overline{c}_{L} c_{R} + c_{R} c_{L})$ $+ m_{top} (\overline{t}_{L} t_{R} + \overline{t}_{R} t_{L})$

$$L_{CC}^{weak\,int} = \frac{g_W}{\sqrt{2}} \left(J_{\mu}^- W_{\mu}^+ + h.c. \right)$$

$$\rightarrow \frac{g_W}{\sqrt{2}} \left(\bar{u}_L \mathbf{V}^{CKM} \gamma_{\mu} d_L W_{\mu}^+ + ... \right)$$

N(N-1)/2 angles and (N-1)(N-2)/2 phases

N=3 3 angles + 1 phase KM the phase generates complex couplings i.e. <u>CP</u> <u>violation;</u>

6 masses +3 angles +1 phase = 10 parameters

V _{ud}	V _{us}	V _{ub}
V _{cd}	V _{cs}	V _{cb}
V _{tb}	V _{ts}	V _{tb}

NO Flavour Changing Neutral Currents (FCNC) at Tree Level (FCNC processes are good candidates for observing NEW PHYSICS)

CP Violation is natural with three quark generations (Kobayashi-Maskawa)

With three generations all CP phenomena are related to the same unique parameter (δ)

Quark masses & Generation Mixing

 $|V_{ud}| = 0.9735(8)$ $|V_{us}| = 0.2196(23)$ \overline{v}_e $|V_{cd}| = 0.224(16)$ $|V_{cs}| = 0.970(9)(70)$ $|V_{cb}| = 0.0406(8)$ $|V_{ub}| = 0.00409(25)$ $|V_{tb}| = 0.99(29)$ (0.999)

c ₁₂ c ₁₃	S ₁₂ C ₁₃	$s_{13} e^{-i\delta}$
$-s_{12}c_{23} \\ -c_{12}s_{23}s_{13} e^{i\delta}$	$c_{12}c_{23}$ - $s_{12}s_{23}s_{13}e^{i\delta}$	S ₂₃ C ₁₃
$s_{12}s_{23} - c_{12}c_{23}s_{13} e^{i\delta}$	$-c_{12}s_{23} \\ -s_{12}c_{23}s_{13} e^{i\delta}$	C ₂₃ C ₁₃

 $\begin{aligned} c_{ij} &= \cos \theta_{ij} \quad s_{ij} &= \sin \theta_{ij} \quad c_{ij} \geq 0 \\ 0 &\leq \delta \leq 2 \pi \qquad |s_{12}| \sim \sin \theta_c \\ \text{for small angles} \qquad |s_{ij}| \sim |V_{ij}| \end{aligned}$

The Wolfenstein Parametrization λ A λ^3 (ρ - i η) 1 - $1/2 \lambda^2$ + $O(\lambda^4)$ $A \lambda^2$ 1 - $1/2 \lambda^2$ - λ $A \lambda^3 \times$ $-A \lambda^2$ $(1 - \rho - i \eta)$ Sin $\theta_{12} = \lambda$ Sin $\theta_{23} = A \lambda^2$ Sin $\theta_{13} = A \lambda^3 (\rho - i \eta)$ $\lambda \sim 0.2 \quad A \sim 0.8$ η~0.2 ρ~0.3

Gluons and quarks

$$\frac{\text{The QCD Lagrangian}:}{\int_{\text{STRONG}} = -1/4 \quad G^{A}_{\mu\nu}G_{A}^{\mu\nu} \qquad \bigoplus \quad \text{GLUONS} \\ + \sum_{f=\text{flavour}} \bar{q}_{f} (i \gamma_{\mu} D_{\mu} - m_{f}) q_{f} \\ \text{QUARKS (& GLUONS)}$$

$$\begin{split} G^{A}{}_{\mu\nu} &= \partial_{\mu}G^{A}{}_{\nu} - \partial_{\nu}G^{A}{}_{\mu} - g_{0} f^{ABC}G^{B}{}_{\mu}G^{C}{}_{\nu} \\ q_{f} &\equiv q_{f}{}^{a}{}_{\alpha}(x) \quad \gamma_{\mu} &\equiv (\gamma_{\mu})^{\alpha\beta} \quad D_{\mu} &\equiv \partial_{\mu}I + i g_{0}t^{A}{}_{ab}G^{A}{}_{\mu} \end{split}$$

Neutron electric dipole moment in SuperSymmetry

Consequences of a Symmetry

 $[S, \mathcal{H}] = 0 \rightarrow IE, \mathbf{p}, \mathbf{s} \rightarrow$ We may find states which are <u>simultaneously</u> eigenstates of <u>S and of the Energy</u>

Violation in the Neutral Kaon System

Expanding in several "small" quantities

/

$$\eta^{00} = \frac{\langle \pi^0 \pi^0 / \mathcal{H}_{\mathbf{W}} / \mathbf{K}_{\mathbf{L}} \rangle}{\langle \pi^0 \pi^0 / \mathcal{H}_{\mathbf{W}} / \mathbf{K}_{\mathbf{S}} \rangle} \sim \varepsilon - 2 \varepsilon$$

Ω

$$\eta^{+-} = \frac{\langle \pi^{+}\pi^{-} / \mathcal{H}_{W} / K_{L} \rangle}{\langle \pi^{+}\pi^{-} / \mathcal{H}_{W} / K_{S} \rangle} \sim \varepsilon + \varepsilon'$$

Conventionally:
$$|K_{S} \rangle = |K_{1} \rangle_{CP=+1} + \varepsilon |K_{2} \rangle_{CP=-1}$$
$$|K_{L} \rangle = |K_{2} \rangle_{CP=-1} + \varepsilon |K_{1} \rangle_{CP=+1}$$

$B^0 - B^0$ mixing

 $\mathcal{L}^{CP} = \mathcal{L}^{\Delta F=0} + \mathcal{L}^{\Delta F=1} + \mathcal{L}^{\Delta F=2}$

$$\Delta F=0$$
 d_e < 1.5 10⁻²⁷ e cm d_N < 6.3 10⁻²⁶ e cm

$$\Delta F=1 \qquad \epsilon ' / \epsilon$$

$$\Delta F=2$$
 ϵ and $B \rightarrow J/\psi K_s$

Measure
$$V_{CKM}$$
Other NP parameters $\Gamma(b \rightarrow u)/\Gamma(b \rightarrow c)$ $\bar{\rho}^2 + \bar{\eta}^2$ $\bar{\Lambda}, \lambda_1, F(1), \ldots$ ϵ_K $\eta[(1-\bar{\rho}) + \ldots]$ B_K Δm_d $(1-\bar{\rho})^2 + \bar{\eta}^2$ $f_{B_d}^2 B_{B_d}$ $\Delta m_d/\Delta m_1$ $(1-\bar{\rho})^2 + \bar{\eta}^2$ ξ $A_{CP}(B_d \rightarrow J/\psi K_s)$ $\sin 2\beta$ $-$

For details see: UTfit Collaboration hep-ph/0501199 hep-ph/0509219 hep-ph/0605213 hep-ph/0606167 http://www.utfit.org

$$Q^{EXP} = V_{CKM} \times \langle H_F | \hat{O} | H_I \rangle$$

classical ut analysis

sin 2β is measured directly from B → J/ψ K_s decays at Babar & Belle

$$\mathcal{A}_{J/\psi K_{s}} = \frac{\Gamma(B_{d}^{0} \rightarrow J/\psi K_{s}, t) - \Gamma(\overline{B}_{d}^{0} \rightarrow J/\psi K_{s}, t)}{\Gamma(B_{d}^{0} \rightarrow J/\psi K_{s}, t) + \Gamma(\overline{B}_{d}^{0} \rightarrow J/\psi K_{s}, t)}$$

$$\mathcal{A}_{J/\psi K_{s}} = \sin 2\beta \quad \sin (\Delta m_{d} t)$$

DIFFERENT LEVELS OF THEORETICAL UNCERTAINTIES (STRONG INTERACTIONS)

1) First class quantities, with reduced or negligible theor. uncertainties $A_{CP}(B \rightarrow J/\psi K_s) \quad \gamma \ from \ B \rightarrow DK$

 $K^0 \rightarrow \pi^0 \nu \bar{\nu}$

2) Second class quantities, with theoretical errors of O(10%) or less that can be reliably estimated $\epsilon_{K} \quad \Delta M_{d,s}$ $\Gamma(B \to c, u), \quad K^{+} \to \pi^{+} \nu \bar{\nu}$

3) Third class quantities, for which theoretical predictions are model dependent (BBNS, charming, etc.) In case of discrepacies we cannot tell whether is <u>new physics or</u> <u>we must blame the model</u> $B \rightarrow K \pi \quad B \rightarrow \pi^0 \pi^0$ $B \rightarrow \phi K_s$

Classical Quantities used in the Standard UT Analysis

New Quantities used in the UT Analysis

Several new determinations of UT angles are now available, thanks to the results coming from the B-Factory experiments

THE COLLABORATION

M.Bona, M.Ciuchini, E.Franco, V.Lubicz,

G.Martinelli, F.Parodi, M.Pierini,

P.Roudeau, C.Schiavi, L.Silvestrini,

V. Sordini, A.Stocchi, V.Vagnoni

Roma, Genova, Annecy, Orsay, Bologna 2006 ANALYSIS

- New quantities e.g. B -> DK included
- Upgraded exp. numbers (after ICHEP)
 - CDF & Belle new measurements

A closer look to the analysis:

- 1) Predictions vs Postdictions
- 2) Lattice vs angles
- 3) V_{ub} inclusive, V_{ub} exclusive vs sin 2 β
- 4) Experimental determination of lattice parameters

V_{UB} PUZZLE

$ V_{ub} \times 10^4$	excl.	35.0	4.0	Lattice QCDSR
$ V_{ub} \times 10^4$	incl.	44.9	3.3	HQET+Model
$ V_{ub} \times 10^4$	average	40.9	2.5	

Inclusive: uses non perturbative parameters most **not** from lattice QCD (fitted from the lepton spectrum)

Tension between inclusive Vub Tension between inclusive Vub and the rest of the fit

<u>**INCLUSIVE**</u> $V_{ub} = (43.1 \pm 3.9) 10^{-4}$

Model dependent in the threshold region (BLNP, DGE, BLL)

But with a different modelling of the threshold region [U.Aglietti et al., 0711.0860] $V_{ub} = (36.9 \pm 1.3 \pm 3.9) \ 10^{-4}$

<u>EXCLUSIVE</u> $V_{ub} = (34.0 \pm 4.0) \ 10^{-4}$

Form factors from LQCD and QCDSR

V_{UB} PUZZLE

Khodjamirian

Recent $|V_{ub}|$ determinations from $B \to \pi l \nu_l$

[ref.]	$f^+_{B\pi}(q^2)$ calculation	$f^+_{B\pi}(q^2)$ input	$ V_{ub} imes 10^3$
Okamoto et al.	lattice $(n_f = 3)$	-	$3.78{\pm}0.25{\pm}0.52$
HPQCD	lattice $(n_f = 3)$	-	$3.55{\pm}0.25{\pm}0.50$
Arnesen et al.	-	$lattice \oplus SCET$	$3.54 \pm 0.17 \pm 0.44$
BecherHill	-	lattice	$3.7\pm0.2\pm0.1$
Flynn et al	-	$\text{lattice} \oplus \text{LCSR}$	$3.47 \pm 0.29 \pm 0.03$
Ball, Zwicky	LCSR	-	$3.5\pm0.4\pm0.1$
this work	LCSR	-	$3.5 \pm 0.4 \pm 0.2 \pm 0.1$

V_{UB} PUZZLE

LATTICE QCD: improve V_{ub} excl. to solve the tension

Beneke CERN '08

$|V_{ub}|$ crisis (about to be resolved?)

- |V_{ub}|f^{Bπ}₊(0) = (9.1 ± 0.6 ± 0.3) × 10⁻⁴ from semileptonic B → πlν spectrum + form factor extrapolation (Ball, 2006)
 Also lattice results (HPQCD) tend to small values.
- $|V_{ub}|f_{+}^{B\pi}(0) = (8.1 \pm 0.4 (?)) \times 10^{-4}$ from $B \to \pi^{+}\pi^{-}, \pi^{+}\pi^{0}, \pi\rho, \ldots + \text{factorization}$ (MB, Neubert, 2003; Arnesen et al, 2005; MB, Jäger, 2005)
- ⇒ $|V_{ub}| \simeq 3.5 \times 10^{-4}$, in contrast to determination from moments of inclusive $b \rightarrow u\ell\nu$ decay, which was $|V_{ub}| \simeq (4.5 \pm 0.3) \times 10^{-4}$.

But: according to (Neubert, LP07) $|V_{ub}| \simeq (3.7 \pm 0.3) \times 10^{-4}$ after reevaluation of m_b input and omitting $B \rightarrow X_s \gamma$ moments!

Hadronic Parameters From UTfit

- 1) Predictions vs Postdictions
- 2) Lattice vs angles
- 3) V_{ub} inclusive, V_{ub} exclusive vs sin 2 β
- 4) Experimental determination of lattice parameters

IMPACT of the NEW MEASUREMENTS on LATTICE HADRONIC PARAMETERS

 $f_{B_s} \hat{B}_{B_s}^{1/2} \quad \xi \quad \hat{B}_K$

Comparison between experiments and theor Comparison between experiments and theory

$$B_{K} = 0.75 \pm 0.07$$
 $B_{K} = 0.75 \pm 0.07$

SPECTACULAR AGREEMENT (EVEN WITH QUENCHED LATTICE QCD) V. Lubicz and C. Tarantino 0807.4605

OLC

...beyond the Standard Model

St beyond the SM (Supersymmetry)

Spin 1/2	Quarks q _L , u _R , d _R	Spin 0	SQuarks Q _L , U _R , D _R
	Leptons l _L , e _R		SLeptons L_L, E_R
Spin 1	Gauge bosons W,Z,y,g	Spin 1/2	Gauginos w,z,?,?
Spin 0	Higgs bosons	Spin 1/2	Higgsinos
	H ₁ , H ₂		$\widetilde{H}_1, \widetilde{H}_2$

$$Q^{EXP} = V_{CKM} \langle F | \hat{O} | I \rangle$$

$$Q^{EXP} = \sum_{i} C^{i}_{SM}(M_{W}, m_{t}, \alpha_{s}) \langle F | \hat{O}_{i} | I \rangle + \sum_{i'} C^{i'}_{Beyond}(\tilde{m}_{\beta}, \alpha_{s}) \langle F | \hat{O}_{i'} | I \rangle$$

In general the mixing mass matrix of the SQuarks (SMM) is not diagonal in flavour space analogously to the quark case We may either Diagonalize the SMM

In the latter case the Squark Mass Matrix is not diagonal

$$(m_{Q})_{ij} = m_{average}^{2} \mathbf{1}_{ij} + \Delta m_{ij}^{2} \quad \delta_{ij} = \Delta m_{ij}^{2} / m_{average}^{2}$$

New local four-fermion operators are generated

$$Q_{1} = (\bar{s}_{L}^{A} \gamma_{\mu} d_{L}^{A}) (\bar{s}_{L}^{B} \gamma_{\mu} d_{L}^{B})$$

$$Q_{2} = (\bar{s}_{R}^{A} d_{L}^{A}) (\bar{s}_{R}^{B} d_{L}^{B})$$

$$Q_{3} = (\bar{s}_{R}^{A} d_{L}^{B}) (\bar{s}_{R}^{B} d_{L}^{A})$$

$$Q_{4} = (\bar{s}_{R}^{A} d_{L}^{A}) (\bar{s}_{L}^{B} d_{R}^{B})$$

$$Q_{5} = (\bar{s}_{R}^{A} d_{L}^{B}) (\bar{s}_{L}^{B} d_{R}^{A})$$
+ those obtained by $L \iff R$

Similarly for the b quark e.g. $(\bar{b}_{R}^{A} d_{L}^{A}) (\bar{b}_{R}^{B} d_{L}^{B})$

B_s mixing, a road to New Physics (NP) ?

The Standard Model contribution to CP violation in B_s mixing is well predicted and rather small

- Sin $2\beta_s = 0.037 \pm 0.002$ (SM or MFV)
- Sin $2\beta_s = 0.041 \pm 0.004$ (Arbitrary NP)

The phase of the mixing amplitudes can be extracted from $B_s ->J/\Psi \phi$ with a relatively small th. uncertainty. A phase very different from 0.04 implies **NP in B_s mixing**

Main Ingredients and General Parametrizations

$$H^{\Delta F=2} = \hat{m} - \frac{i}{2}\hat{\Gamma} \quad A = \hat{m}_{12} = \langle \bar{M}|\hat{m}|M\rangle \quad \Gamma_{12} = \langle \bar{M}|\hat{\Gamma}|M\rangle$$

.

Neutral Kaon Mixing

$$ReA_K = C_{\Delta m_K} ReA_K^{SM}$$
 $ImA_K = C_{\varepsilon} ImA_K^{SM}$

B_d and **B**_s mixing

$$A_q e^{2i\phi_q} \equiv C_{B_q} e^{2i\phi_{B_q}} \times A_q^{SM} e^{2i\phi_q^{SM}} = \left(1 + \frac{A_q^{NP}}{A_q^{SM}} e^{2i(\phi_q^{NP} - \phi_q^{SM})}\right) \times A_q^{SM} e^{2i\phi_q^{SM}}$$

$$C_{B_s}e^{2i\phi_{B_s}} = \frac{A_s^{SM}e^{-2i\beta_s} + A_s^{NP}e^{2i(\phi_s^{NP} - \beta_s)}}{A_s^{SM}e^{-2i\beta_s}} = \frac{\langle \bar{B}_s | H_{eff}^{full} | B_s \rangle}{\langle \bar{B}_s | H_{eff}^{SM} | B_s \rangle}$$

$$\begin{split} \frac{\Gamma_{12}^{q}}{A_{q}} &= -2\frac{\kappa}{C_{B_{q}}} \left\{ e^{i2\phi_{B_{q}}} \left(n_{1} + \frac{n_{6}B_{2} + n_{11}}{B_{1}} \right) - \frac{e^{i(\phi_{q}^{\text{SM}} + 2\phi_{B_{q}})}}{R_{t}^{q}} \left(n_{2} + \frac{n_{7}B_{2} + n_{12}}{B_{1}} \right) \right. \\ &+ \frac{e^{i2(\phi_{q}^{\text{SM}} + \phi_{B_{q}})}}{R_{t}^{q^{2}}} \left(n_{3} + \frac{n_{8}B_{2} + n_{13}}{B_{1}} \right) + e^{i(\phi_{q}^{\text{Pen}} + 2\phi_{B_{q}})} C_{q}^{\text{Pen}} \left(n_{4} + n_{9}\frac{B_{2}}{B_{1}} \right) \\ &- e^{i(\phi_{q}^{\text{SM}} + \phi_{q}^{\text{Pen}} + 2\phi_{B_{q}})} \frac{C_{q}^{\text{Pen}}}{R_{t}^{q}} \left(n_{5} + n_{10}\frac{B_{2}}{B_{1}} \right) \right\} \end{split}$$

 C_q^{Pen} and ϕ_q^{Pen} parametrize possible NP contributions to Γ^q_{12} from b -> s penguins

Physical observables

$$\Delta m_s = |A_s| = C_{B_s} \Delta m_s^{SM}$$

$$2\phi_{s} = -\arg A_{s} = 2 \left(\beta_{s} - \phi_{B_{s}}\right)$$
$$A_{SL}^{s} = \frac{\Gamma(\bar{B}_{s} \to l^{+}X) - \Gamma(B_{s} \to l^{-}X)}{\Gamma(\bar{B}_{s} \to l^{+}X) + \Gamma(B_{s} \to l^{-}X)} = Im\left(\frac{\Gamma_{12}^{s}}{A_{s}}\right)$$

$$A_{SL}^{\mu\mu} = \frac{f_d \chi_{d0} A_{SL}^d + f_s \chi_{s0} A_{SL}^s}{f_d \chi_{d0} + f_s \chi_{s0}}$$
$$\frac{\Delta \Gamma_s}{\Delta m_s} = Re \left(\frac{\Gamma_{12}^s}{A_s}\right) \qquad \tau_{B_s}^{FS} = \frac{1}{\Gamma_s} \frac{1 + \left(\Delta \Gamma_s / 2\Gamma_s\right)^2}{1 - \left(\Delta \Gamma_s / 2\Gamma_s\right)^2}$$

$b \rightarrow s \& \tau \rightarrow \mu \gamma$ in SUSY GUTS

When SUSY is broken at a scale larger than M_{GUT} SQuark and SLepton masses unify including the non-diagonal coupling $(\delta_{ij})_{LL}, (\delta_{ij})_{RR}$

The following relations holds at M_Z (Ciuchini et al. hep-ph/0307191)

$$(\delta_{ij}^{u,d})_{LL} \simeq \frac{m_E^2}{m_Q^2} (\delta_{ij}^l)_{RR}$$
$$(\delta_{ij}^d)_{LR} \simeq \frac{m_{L_{ave}}^2}{m_Q^2} \frac{m_b}{m_\tau} (\delta_{ij}^l)_{RL}^*$$

$b \rightarrow s \& \tau \rightarrow \mu \gamma$ in SUSY GUTS

mass insertion analysis in a SUSY-GUT scheme

- * RG-induced (δ₂₃)_{LL}
- * explicit (δ₂₃)_{RR}

Limits from Belle and Babar $< 4.5 \& 6.8 \ 10^{-8}$

In the UTfit range for the B_s mixing phase: BR($\tau \rightarrow \mu \gamma$) > 3 x 10⁻⁹ !!

UTA in the SM: 2007 vs 2015

CONCLUSIONS

The evidence (strong suggestion, hint, ..) of a large Bs mixing phase survives to a second run of measurements

The upgraded UTFit analysis gives a 2.9 σ deviation from the SM (new CDF measurements still to be included)

In this framework MFV ruled out; MSSM could work with LL and RR insertions without conflict with b -> s γ

Within SUSY GUT a large BR($\tau \rightarrow \mu\gamma$) is expected