Hydra

A library for data analysis in massively parallel platforms

A. Augusto Alves Jr and M.D. Sokoloff

University of Cincinnati
aalvesju@cern.ch

Presented at the
Workshop Perspectives of GPU computing in Science
September 2016, Rome

A. Augusto Alves Jr. Hydra September 27, 2016 1/18

Design, strategies and goals of Hydra
Functionalities

Functors

Data containers

Function evaluation

Multidimensional numerical integration
Multidimensional random number generation
Phase-Space Monte Carlo

Interface to Minuit2 and fitting

Summary

A. Augusto Alves Jr. Hydra September 27, 2016 2/18

Hydra is a header only templated C++ library to perform data analysis
on massively parallel platforms.

@ It is implemented on top of the C++ Standard Library and a
variadic version of the Thrust library.

@ Hydra runs on Linux systems and can perform calculations using
OpenMP, CUDA, TBB enabled devices.

@ It is focused on portability, usability, performance and precision.

A. Augusto Alves Jr. Hydra September 27, 2016 3 /18

Design and features

The

main design features are:

The library is structured using static polymorphism.

Type safety is enforced at compile time in order to avoid the
production of invalid or performance degrading code.

No function pointers or virtual functions: stack behavior is known
at compile time.

Static polymorphism also increases the implementation of
optimizations by the compiler.

@ No need to write explicit device code.

Ex.:

Clean and concise semantics. Interface easy to use correctly and
hard to use incorrectly.

RAIl, CRTP...

The same source files written using Hydra components and

standard C++ compiles on GPU or CPU just exchanging the extension
from .cu to .cpp.

A. Augusto Alves Jr. Hydra September 27, 2016 4 /18

Functionalities currently implemented

o Generation of phase-space Monte Carlo Samples with any number
of particles in the final states.

@ Sampling of multidimensional PDFs.
@ Data fitting of binned and unbinned multidimensional data sets.

o Evaluation of multidimensional functions over heterogeneous data
sets.

@ Numerical integration of multidimensional functions using Monte
Carlo-based methods: flat or self-adaptive (Vegas-like) .

Many other possibilities can be implemented just combining the core
functionalities.

A. Augusto Alves Jr. Hydra September 27, 2016 5/ 18

Functors

In Hydra most of the calculations are performed using function objects.

@ Hydra add features, type information and interfaces to generic functors using the
CRTP idiom.

@ For example, a Gaussian with two fit parameters is represented like this:
1 struct Gauss: public BaseFunctor<Gauss,b double, 2>

2

3

4 | //client need to implement the Evaluate(T) method

5 | //for homogeneous data.

6 | template<typename T>

7 | __host__ _ device _

8 | inline double Evaluate(T* x){}

9

10 | //or heterogeneous data.
11 | template<typename T>

12 | _host _ _ device

13 inline double Evaluate(T x){}
14

15 I

@ For all functors deriving from hydra: :BaseFunctor<Func,ReturnType,NPars>:

@ If the calculation is expensive and the functor will be called many times, the
first call results can be cached.
@ Can be used to compose more complex mathematical constructs.

A. Augusto Alves Jr. Hydra September 27, 2016 6 /18

Arithmetic operations and composition with functors

Hydra provides a lot “syntax sugar” to deal with function objects.

@ All the basic arithmetic operators are overloaded. Composition is
also possible. If A, B and C are Hydra functors, the code below is
completely legal.

//basic arithmetic operations
auto plus_functor = A + B; auto minus_functor = A — B;
auto prod_functor = A % B; auto div_functor = A/B;
//composition of basic operation

auto any functor = (A — B)*(A + B)x*(A/C);

// C(A,B) is represented by:
auto compose functor = compose(C, A, B)

HOOWONOOURWNKE

e

@ The functors resulting from arithmetic operations and composition
can be cached as well.

@ No intrinsic limit on the number of functors participating on
arithmetic or composition mathematical expressions.

A. Augusto Alves Jr. Hydra September 27, 2016 7/ 18

Support for C++ lambdas

Lambda functions are a very precious C++ resources that allow the
implementation of new functionalities on-the-fly. These objects can
hold state, capture variables defined in the enclosing scope etc...

@ Lambda functions are supported in Hydra.

@ In the client code one can define a lambda function at any point and convert it into
a Hydra functor using hydra: :wrap_lambda():

1

2 | double two = 2.0;

3 | //define a simple lambda and capture "two"

4 | auto my_ lambda = [] _ host device_ _(doublex x)

5 | { return twoxsin(x[0]); };

6

7 | //convert is into a Hydra functor

8 | auto my lamba wrapped = wrap lambda(my_ lambda);

9

@ CUDA 8.0 (in RC status right now) supports lambda functions on device and host

code.

@ Just a friendly advise: capture variables always by value!

A. Augusto Alves Jr. Hydra September 27, 2016 8 /18

Data containers

Hydra algorithms can operate over any iterable C++ container defined
in the C++ Standard Library or Thrust. Hydra provides PointVector,
a built-in generic container, that can represent binned or unbinned
multidimensional datasets.

PointVector is an iterable collection of Point objects:

@ hydra::Point represents multidimensional data points with coordinates and value,
error of the coordinates and error of the value.

@ hydra::Point uses conditional base class members and methods injection in order to
save memory and stack size.

@ hydra::Point objects can be streamed to std::cout (on the host of course)

@ Coordinates can be of any type that make sense... not only real numbers!

1

2 //two dimensional data set

3 PointVector<device , double, 2> data_d(1le6);

4

5 //get data from device and fill a ROOT 2D histogram
6 PointVector<host> data_h(data_d);

7

8 TH2D hist("hist", "my histogram", 100, min, max);
9

10 for (auto point: data_h)

11 hist. Fill (point.GetCoordinate(0), point.GetCoordinate(1));
12

A. Augusto Alves Jr. Hydra September 27, 2016 9/ 18

Generic function evaluation

Functors can be evaluated over large data sets using the template function hydra: :Eval
@ hydra::Eval returns a vector with results.

@ hydra: :Range provides the flexibility to combine different pieces of the same
container, for example:

1 //single functor

2 Eval(Functor const&, Range<lterators> const&...);

3 //multiple functors

4 Eval(thrust:: tuple<Functors...> const&, Range<lterators>const&...)
@ It is not necessary to explicitly set any template parameter:

1 | // lambda to calculate sin(x)

2 | auto sinL = [] host device (doublex x){ return sin(x[0]);};
3 | auto sinW = wrap lambda(sinL);

4 | // lambda to calculate cos(x)

5 | auto cosL = [] host device (doublex x){ return cos(x[0]);};
6 | auto cosW = wrap lambda(cosL);

7 | // evaluation -

8 | auto functors = thrust:: make tuple(sinW, cosW);

9 | auto range = make range(angles d.begin(), angles d.end());

10 auto result = Eval(_ functors , ra}ge); -

A. Augusto Alves Jr. Hydra September 27, 2016 10 / 18

Multidimensional numerical integration

Hydra provides two MC based methods for multidimensional numerical
integration: Plain Monte Carlo and self-adaptive Vegas-like algorithm
(importance sampling).

@ Hydra implementations follow closely the corresponding GSL algorithms.

@ Methods can be configured via template parameters (policies) to call the integrand
on the host or on the device and use different random number engines.

@ Both methods use RAII to acquire, initialize and release the resources.

@ Example of Vegas usage:

1 | //Vegas state hold the resources for performing the integration
2 VegasState<l> *state = new VegasState<1>(min, max);

3 | state —>SetVerbose(—1);

4 | state —>SetAlpha (1.75);

5 | state —>Setlterations (5);

6 | state —>SetUseRelativeError (1);

7 state —>SetMaxError(le — 3);

8 | //10,000 call (fast convergence and very precice)

9 Vegas<l> vegas(state, 10000);

A. Augusto Alves Jr. Hydra September 27, 2016 11 / 18

Multidimensional PDF sampling

The template class hydra: :Random manages the multidimensional
function sampling in Hydra.
@ Generic PDF sampling using accept-reject method.

@ hydra::Random provides an increasing number of basic distributions: Uniform,
Breit-Wigner, Exponential...

@ Can be configured via template parameters (policies) to use different random number
generators.

@ Methods take the target's container iterators as input and engage the generation on
the host or device backend.

1

2 //Random object with current time count as seed.

3 | Random<thrust ::random:: default _random engine>

4 | Generator(std::chrono::system clock::now().time since epoch().count())
5 | //1D host buffer a - -

6 hydra :: mc host vector<double> data _h(nentries);

7 | //uniform a N

8 | Generator.Uniform(—5.0, 5.0, data h.begin(), data h.end());

9 | //gaussian - a

10 | Generator.Gauss (0.0, 1.0, data h.begin(), data h.end());

11 | //exponential - -

12 | Generator .Exp (1.0, data h.begin(), data h.end());

13 | //breit—wigner B a

14 Generator.BreitWigner (2.0, 0.2, data_h.begin(), data_h.end());
15 }

A. Augusto Alves Jr. Hydra September 27, 2016 12 / 18

Multidimensional PDF sampling

Sum of gaussians (DEVICE;

// two gaussians hit—and—miss

//gaussian one 2
std :: array<double, 2> meansl ={2.0, 2.0 };

std :: array<double, 2> sigmasl ={1.5, 0.5 }; o
//gaussian two

std :: array<double, 2> means2 ={-2.0, —20 }; -2
std :: array<double, 2> sigmas2 ={0.5, 1.5 };

Gauss<2> Gaussianl(meansl, sigmasl); L
Gauss<2> Gaussian2(means2, sigmas2);

T AR BRI TR B AR AP
//add the pdfs oo 2 0 2 4
auto Gaussians = Gaussianl 4+ Gaussian2;

//2D range
std :: array<double, 2> min ={—-5.0, —5.0 };
std :: array<double, 2> max ={ 5.0, 5.0 };

auto gaussians_data_d =
Generator.Sample<device >(Gaussians ,min, max, ntrials)

WhvFOOO~NOUOA~AWNHOODONOUOUTSEWNH

Time for 10M events:
@ GeForce Titan-Z: 0.063514s
o Intel i7 4 cores © 3.0 GHz: 0.79484s

A. Augusto Alves Jr. Hydra September 27, 2016 13 / 18

Phase-Space Monte Carlo

Hydra supports the production of phase-space Monte Carlo samples.
The generation is managed by the class hydra: :PhaseSpace and the
storage is managed by the specialized container hydra: :Events.

@ Policies to configure the underlying random number engine and
the backend used for the calculation.

@ No limitation on the number of final states.
@ Support the generation of sequential decays.

@ hydra::Events is iterable and therefore is fully compatible with
C++11 range semantics.

o Generation of weighted and unweighted samples.

The Hydra phase-space generator supersedes the library MCBooster
(https://github.com/MultithreadCorner/MCBooster), from the same
developer.

A. Augusto Alves Jr. Hydra September 27, 2016 14 / 18

Phase-Space Monte Carlo

1 Vector4R B0(5.27961, 0.0, 0.0, 0.0);

2 | vector<double> e - daliz
3 | massesB0{3.096916, 0.493677, 0.13957018 }; %ZP,.'/

4 =T

5 | // PhaseSpace object for BO—> K pi J/psi sl I

6 | PhaseSpace<3> phsp(B0.mass(), massesB0); :I'

7 | // container il

8 | Events <3, device> B02JpsiKpi Events d(10e7); 18]

9 | // generate ... B N i

0 | phsp.Generate (B0, B02JpsiKpi_Events d); 16I’

1 |8

2 | //copy events to the host 14l

3 Events <3, host> n,

4 | BO2JpsiKpi_Events h(BO02JpsiKpi_Events_d); o

5 £

6 | for(auto event: BO02JpsiKpi Events h) U

, ...} — — 05 1 15

Time to generate 10M events:
@ GeForce Titan-Z: 0.06896s
@ Intel i7 4 cores @ 3.0 GHz: 0.53542s

September 27, 2016

A. Augusto Alves Jr.

Interface to Minuit2 and fitting

Hydra implements an interface to Minuit2 that parallelizes the FCN
calculation. This accelerates dramatically the calculation over large datasets.

@ The fit parameters are represented by the class hydra: :Parameter and
managed by the class hydra: :UserParameters.

@ hydra::UserParameters has the same semantics of
Minuit2::MnUserParameters.

@ Any positive definite Hydra-functor can be converted into PDF.
@ The PDFs are normalized on-the-fly.
@ The estimator is a policy in the FCN.

@ Data is passed via iterators. Any iterable container can be used. |
personally advise to use hydra: :PointVector.

The FCN provided by Hydra can be used directly in Minuit2.

A. Augusto Alves Jr. Hydra September 27, 2016 16 / 18

Interface to Minuit2 and data fitting

1

2 | //Generate data

3 PointVector<device , double, 1> data d(nentries);

4 | //fill data container...

5 | //get the FCN

6 | auto modelFCN = make loglikehood fcn(model, data d.begin(), data d.end());
7

8 | //fit strategy

9 | MnStrategy strategy (1);

10

11 | //create Migrad minimizer

12 | MnMigrad migrad (modelFCN, upar. GetState() , strategy);
13

14 | //perform

15 FunctionMinimum minimum = migrad ();

x10° gaussian

@ The black dots represent 10M
event simulated datasample.

@ The red line is the fit result

@ The blue shadowed area is

data sampled from the fitted
model.

A. Augusto Alves Jr. Hydra September 27, 2016 17 / 18

Summary and prospects

@ The project is supported by NSF and is hosted on GitHub:
https://github.com/MultithreadCorner/Hydra

@ The package includes a suite of examples

@ The next version will expand the range of options for data fitting and include
histograming-related functionalities.

Please, visit the page of the project, give a try, report bugs, make
suggestions... Thanks!

A. Augusto Alves Jr. Hydra September 27, 2016 18 / 18

