High speed 3D track reconstruction in particle physics with GPUs

- Akitaka Ariga, PhD
- Senior staff
- Albert Einstein Center for Fundamental physics
- Laboratory for High Energy Physics
- University of Bern, Switzerland

ŰNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

50 um

Particle physics needs GPU!

- Particle Physics = Big science
- Large facilities and detectors

ATLAS experiment

OPERA experiment Photographic emulsion detectors

- Huge amount of data from detectors
- Reconstruction of data needs GPUs!!

Photographic emulsion particle trackers

The best position resolution among all detectors!

10¹⁴ crystals in a film

Cross-sectional view (SEM)

Intrinsic resolution **50nm**

Antiproton annihilation in the emulsion (AEgIS 2012)

antiproton Focus Emulsion layer (50 µm) Glass base 1 mm Emulsion layer (50 µm)

3D view of antiproton annihilation

100 μ m 1.2x10⁸ detection channels in this volume

Nice detector... but some drawbacks...

- Very high resolution = very large data volume
 - 10 Tbytes / 10cm x 10cm
- No way to process it automatically... till recently.

F.G. Houtermans im Kreise seiner Scannerinnen im Physikalischen Institut Bern 1955/56

Swiss Scanning Station in Bern

Several hundreds of photographic emulsion sheets analyzed every week

Evolution of automated scanning

High speed readout system (current generation)

Custom-made real-time scanning microscope.

Need to process in real-time, locally. See demo of data

Track reconstruction

100 µm

- Reconstruction of particle trajectories
 - 1. 3D image filtering
 - 2. Recegnize dots (or grains)
 - 3. Find any combination of grains
 - 4. Find sequential grains forming lines
- 5. Fit track 👝 5D (3D position, 2D angles)
 - Millions of such data unit (view) have to be processed within hours.

3D image processing and object recognition Host GPU

zoom of raw image

3D image filtering (kind of high pass filter)

O(10⁴) grains / view

Host

Grains have optical shadow in Z. Consecutive frames has a strong correlation. →A 3D image processing.

Tracking algorithm

- 1. Form "seeds" of tracks = 3D line made of **any two combination of grains** (4π solid angle)
- 2. Count number of grains along the seeds (parallelizable)

Processing speed

- 1 Views = 1280x1024 pixels x 40 frames = 52Mbyte
- CPU :i7- 3930K 6 cores, 12 threads, 3.2 GHz, GPU : Geforce GTX TITAN, 2688 cuda cores

New scanning system under development

- 4 M-pixel x 563 fps camera (throughput 2.2 GB/s)
- Image processing with 3 GPUs
- Track reconstruction with 8 GPUs

PB-level Scanning facility • 6 microscopes: Data throughput of 13 GB/s, over 1

- PB/day
- Real-time processing with a cluster of GPU servers on site

Wide range of application

Emulsion detector technology with GPUs

Fundamental Physics

- Neutrino physics
 - Hadron physics
- Antimatter
- Dark matter

Accelerator

- Beam monitoring
- Muon beam study in neutrino beamline

Medical application

- Neutron source imaging
- Proton radiography

Geosciences

Muon radiography

16

- Volcanoes
- Glaciers

Muon tomography of active glaciers

GPU _ monitoring of the glacier retreat in Swiss Alps

Summary

- Large amount of data comes from particle detectors. Real-time processing is vital.
- GPUs play essential roles in such tasks.
- Successful application for emulsion detectors
 - Highly parallelizable algorithms
 - O(100) faster wrt CPU
- Preparing a PB-level microscope facility for future projects in physics and applications.

AEgIS experiment

aiming at the first measurement of gravitational force on antimatter

- Principal of equivalence between gravitational and inertial mass (m_i=m_g) is measured for matter with a precision of **10**⁻¹³. (**10**⁻³ by Galileo)
- Gravity on antimatter has never measured directly!
- AEgIS at CERN is going to measure the gravitational acceleration (g) on a antihydrogen with 1 % accuracy.

9.8m/s²

Detection of antiproton annihilation

- The scale of free-fall of anti-hydrogen is expected to be ~10 microns
- Use of high precision particle detector : Photographic emulsion detectors
- 3D tracking of particles
- High position resolution (50 nm)

Software and Hardware

- C++, CERN ROOT, CUDA (5.5)
 - CUDA experience since 2008
 - ROOT classes calling CUDA kernels
- CPU: i7-3930K (3.2 GHz, 6 cores)
- GPU: Geforce GTX TITAN x 3
 - Single precision

Multi-CPU-thread processing

- Each CPU-thread is responsible of a view
- Each CPU-thread is linked to one of 3 GPUs

Processing time with "multi-threading" and "multi-GPUs " (Antiproton sample)

CPU :i7- 3930K 6 cores, 12 threads, 3.2 GHz, GPU : Geforce GTX TITAN, 2688 cuda cores

Reconstructed tracks and detection efficiency

• Performance test with cosmic-ray tracks

Some publications

A. Ariga and T. Ariga, Fast 4π track reconstruction in nuclear emulsion detectors based on GPU technology, JINST 9 P04002 (2014), arXiv:1311.5334

AEgIS experiment with photographic emulsions

- JINST 8 (2013) P02015
- JINST 8 (2013) P08013

Emulsions give 3D vector data, with micrometric precision.

The frames correspond to the scanning area. Yellow short lines \Box measured tracks. Other colored lines \Box interpolation or extrapolation.

Film to film connection

LOCATED NEUTRINO INTERACTION

High precision measurement system

- Intrinsic resolution of each grain = 50nm
 - Two grains on top and bottom of 200 μm base $_{\Box}$ 350 μrad
- Conventional systems spoil it due to mechanical vibration of Z axis (about 0.2µm, corresp. 1.5 mrad)
- 👝 Need high precision Z-axis
- Piezo objective scanner under testing z axis systematics to be kept below 60 μrad
- By fitting a series of grains, the angular resolution would reach 200 μrad
- Angular alignment between films to be done by using dense 400 GeV proton tracks
 - 400 GeV proton scatters 2 μrad between emulsion trackers
 - 10⁵ tracks/cm² = 100 tracks in each microscope view

Piezo objective scanner

