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Overview and Agenda

Dynamic Rupture and Earthquake Simulation with SeisSol:

• unstructured tetrahedral meshes
• high-order ADER-DG discretisation
• compute-bound performance via optimized matrix kernels

Optimising SeisSol for Xeon Phi Platforms

• offload scheme: 1992 Landers Earthquake as landmark simulation,
scalability on SuperMUC, Tianhe-2, Stampede

• optimisation for Knights Corner and Landing
• towards simulations in symmetric mode (1st results on Salomon)
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Part I

Dynamic Rupture and Earthquake
Simulation with SeisSol

http://www.seissol.org/

Dumbser, Käser et al. [9]
An arbitrary high-order discontinuous Galerkin method . . .

Pelties, Gabriel et al. [11]
Verification of an ADER-DG method for complex dynamic rupture problems
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Dynamic Rupture and Earthquake Simulation

Landers fault system: simulated ground motion and seismic waves [3]

SeisSol – ADER-DG for seismic simulations:
• adaptive tetrahedral meshes
→ complex geometries, heterogeneous media, multiphysics

• complicated fault systems with multiple branches
→ non-linear multiphysics dynamic rupture simulation

• ADER-DG: high-order discretisation in space and time
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Example: 1992 Landers M7.2 Earthquake

• multiphysics simulation of dynamic rupture and resulting ground motion of
a M7.2 earthquake

• fault inferred from measured data, regional topography from satellite data,
physically consistent stress and friction parameters

• static mesh refinement at fault and near surface
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Multiphysics Dynamic Rupture Simulation

• spontaneous rupture, non-linear interaction with wave-field
• featuring rupture jumps, fault branching, etc.
• tackles fundamental questions on earthquake dynamics
• realistic rupture source for seismic hazard assessment
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Part II

SeisSol as a Compute-Bound Code:
Code Generation for Matrix Kernels

Breuer, Heinecke, Rannabauer, Bader [1]: High-Order ADER-DG Minimizes
Energy- and Time-to-Solution of SeisSol (ISC’15)

Uphoff, Bader: Generating high performance matrix kernels for earthquake
simulations with viscoelastic attenuation (HPCS 2016, accepted)
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Seismic Wave Propagation with SeisSol
Elastic Wave Equations: (velocity-stress formulation)

qt + Aqx + Bqy + Cqz = 0

with q = (σ11, σ22, σ33, σ12, σ23, σ13,u, v ,w)T

Technische Universität München
Department of Informatics V

A. Breuer, A. Heinecke, S. Rettenberger,
M. Bader, C. Pelties

Optimization of SeisSol

SeisSol in a nutshell: Governing eq’s

4

qt + Aqx + Bqy + Cqz = 0. (46)
The nine dimensional vector of unknowns,

q =

0
BBBBBBBBBBBB@

�11

�22

�33

�12

�23

�13

u
v
w

1
CCCCCCCCCCCCA

, (47)

includes the normal stress components �11, �22 and �33, the shear stresses �12,
�23 and �13 and the particle velocities in x-, y-, and z-direction, u, v and w
(see [7, ch. 22.1], TODO: Puente 1.2). Furthermore the matrices A, B and C
are defined by (see [Eigenstructure3D elastic.mws TODO]):

A =

0
BBBBBBBBBBBB@

0 0 0 0 0 0 -�- 2 µ 0 0
0 0 0 0 0 0 -� 0 0
0 0 0 0 0 0 -� 0 0
0 0 0 0 0 0 0 -µ 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -µ

-⇢-1 0 0 0 0 0 0 0 0
0 0 0 -⇢-1 0 0 0 0 0
0 0 0 0 0 -⇢-1 0 0 0

1
CCCCCCCCCCCCA

B =

0
BBBBBBBBBBBB@

0 0 0 0 0 0 0 -� 0
0 0 0 0 0 0 0 -�- 2 µ 0
0 0 0 0 0 0 0 -� 0
0 0 0 0 0 0 -µ 0 0
0 0 0 0 0 0 0 0 -µ
0 0 0 0 0 0 0 0 0
0 0 0 -⇢-1 0 0 0 0 0
0 -⇢-1 0 0 0 0 0 0 0
0 0 0 0 -⇢-1 0 0 0 0

1
CCCCCCCCCCCCA

C =

0
BBBBBBBBBBBB@

0 0 0 0 0 0 0 0 -�
0 0 0 0 0 0 0 0 -�
0 0 0 0 0 0 0 0 -�- 2 µ
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 -µ 0
0 0 0 0 0 0 -µ 0 0
0 0 0 0 0 -⇢-1 0 0 0
0 0 0 0 -⇢-1 0 0 0 0
0 0 -⇢-1 0 0 0 0 0 0

1
CCCCCCCCCCCCA

. (48)

�(x, y, z) and µ(x, y, z) are the Lamé parameters, whereas µ is the shear modulus
and � doesn’t have a direct physical interpretation (see [7, ch. 22.1]), ⇢(x, y, z) >
0 is the density of the material (see [7, ch. 2.12.4]).
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• high order discontinuous Galerkin discretisation
• ADER-DG: high approximation order in space and time:
• additional features: local time stepping, high accuracy of earthquake

faulting (full frictional sliding)
→ Dumbser, Käser et al., e.g. [9]
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SeisSol in a Nutshell – ADER-DG
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Optimization of SeisSol

SeisSol in a nutshell: ADER-DG

5

Mathematical Operation File name Subroutine
(K⇠)T (Qk)T (A⇤

k)T + (K⌘)T (Qk)T (B⇤
k)T cauchykovalewski.f90 cauchyKovalewskiTimeIntegration

recursively ! I(tn+1 - tn)

Q̂k = A⇤
kI(tn+1 - tn) galerkin2d_solver.f90 ADERGalerkin2D_Unified

Q̂k = Q̂kK⇠ galerkin2d_solver.f90 ADERGalerkin2D_Unified

Q̂k = B⇤
kI(tn+1 - tn) galerkin2d_solver.f90 ADERGalerkin2D_Unified

Q̂k = Q̂kK⌘ galerkin2d_solver.f90 ADERGalerkin2D_Unified

⇥ ⇥ ⇥

Table 1: Matrix operations in SeisSol2D

3.7 Complete Update Scheme

Combining the spatial discretization in chapter 3.3 with the flux computation
in chapter 3.4 and the ADER time discretization of chapter 3.6 the following
explicit update scheme is obtained:

Qn+1
k = Qk-

|Sk|

|Jk|
M-1

✓ 4X

i=1

Nk,iA
+
k N-1

k,iI(t
n, tn+1, Qn

k )F-,i

+

4X

i=1

Nk,iA
-
k(i)N

-1
k,iI(t

n, tn+1, Qn
k(i))F

+,i,j,h

◆

+M-1A⇤
kI(tn, tn+1, Qn

k )K⇠

+M-1B⇤
kI(tn, tn+1, Qn

k )K⌘

+M-1C⇤
kI(tn, tn+1, Qn

k )K⇣

(91)

Qn+1
k = Qk-

|Sk|

|Jk|
M-1

✓ 4X

i=1

F-,iI(tn, tn+1, Qn
k )Nk,iA

+
k N-1

k,i

+

4X

i=1

F+,i,j,hI(tn, tn+1, Qn
k(i))Nk,iA

-
k(i)N

-1
k,i

◆

+M-1K⇠I(tn, tn+1, Qn
k )A⇤

k

+M-1K⌘I(tn, tn+1, Qn
k )B⇤

k

+M-1K⇣I(tn, tn+1, Qn
k )C⇤

k

(92)

4 Structure of the Code

5 Matrix Patterns

This chapter shows the matrix patterns in SeisSol for the ADER-DG scheme
of polynomial order 3, which results in (3 + 1)(3 + 2)(3 + 3)/6 = 20 degrees of
freedom. The global matrices correspond to the reference tetrahedron. Local
matrices are shown for the first element only. The output was extracted from
SeisSol directly.

29

U
pd

at
e 

sc
he

m
e

I(tn, tn+1, Qn
k ) =

JX

j=0

(tn+1 - tn)j+1

(j + 1)!

@j

@tj
Qk(tn)

(Qk)t = -M-1
�
(K⇠)TQkA⇤

k + (K⌘)TQkB⇤
k + (K⇣)TQkC⇤

k

�C
au

ch
y 

K
ov

al
ew

sk
i
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Optimisation of Matrix Operations
Apply sparse matrices to multiple DOF-vectors Qk
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(a) Computation of the first time derivative ∂1/∂t1Qk.
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(b) Computation of the second derivative ∂2/∂t2Qk.

Fig. 1. First two recursions of the ADER time integration for a fifth order method.
Orange blocks generate zero-blocks in the derivatives, ivory blocks hit zero blocks.

2.2 Efficient Evaluation of the ADER Time Integration

In this subsection, we introduce an improved scheme that reduces the compu-
tational effort of the ADER time integration, formulated in [24] and in discrete
form in Sec. 2.1.

Analyzing the sparsity patterns of the involved stiffness matrices, we can
substantially reduce the number of operations in the ADER time integration.
This is especially true for applied high orders in space and time: The transposed
stiffness matrices (Kξ)T , (Kη)T and (Kζ)T of order O contain a zero block
starting at the first row, which accounts for the new hierarchical basis functions
added to those of the preceding order O − 1 (without proof). According to Eq.
(1) we have to compute the temporal derivates ∂j/∂tjQk for j ∈ 1 . . .O − 1 by
applying Eq. (2) recursively to reach approximation order O in time.

The first step (illustrated in Fig. 1 (a)) computes ∂1/∂t1Qk from the initial
DOFs Qnk . The zero blocks of the three matrices K̂ξc generate a zero block in the
resulting derivative and only the upper block of size BO−1×9 contains non-zeros.
In the computation of the second derivative ∂2/∂t2Qk we only have to account
for the top-left block of size BO−1 × BO−1 in the matrices K̂ξc . As illustrated
in Fig. 1 (b) the additional non-zeros hit the previously generated zero block
of derivative ∂1/∂t1Qk. The following derivatives ∂j/∂tjQk for j ∈ 3 . . .O − 1
proceed analogously and for each derivative j only the K̂ξc-sub-blocks of size
BO−j × BO−j have to be taken into account. Obviously, the zero blocks also
appear in the multiplication with the matrices A?, B? and C? from the right
and additional operations can be saved.
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(a) Computation of the first time derivative ∂1/∂t1Qk.
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(b) Computation of the second derivative ∂2/∂t2Qk.

Fig. 1. First two recursions of the ADER time integration for a fifth order method.
Orange blocks generate zero-blocks in the derivatives, ivory blocks hit zero blocks.

2.2 Efficient Evaluation of the ADER Time Integration

In this subsection, we introduce an improved scheme that reduces the compu-
tational effort of the ADER time integration, formulated in [24] and in discrete
form in Sec. 2.1.

Analyzing the sparsity patterns of the involved stiffness matrices, we can
substantially reduce the number of operations in the ADER time integration.
This is especially true for applied high orders in space and time: The transposed
stiffness matrices (Kξ)T , (Kη)T and (Kζ)T of order O contain a zero block
starting at the first row, which accounts for the new hierarchical basis functions
added to those of the preceding order O − 1 (without proof). According to Eq.
(1) we have to compute the temporal derivates ∂j/∂tjQk for j ∈ 1 . . .O − 1 by
applying Eq. (2) recursively to reach approximation order O in time.

The first step (illustrated in Fig. 1 (a)) computes ∂1/∂t1Qk from the initial
DOFs Qnk . The zero blocks of the three matrices K̂ξc generate a zero block in the
resulting derivative and only the upper block of size BO−1×9 contains non-zeros.
In the computation of the second derivative ∂2/∂t2Qk we only have to account
for the top-left block of size BO−1 × BO−1 in the matrices K̂ξc . As illustrated
in Fig. 1 (b) the additional non-zeros hit the previously generated zero block
of derivative ∂1/∂t1Qk. The following derivatives ∂j/∂tjQk for j ∈ 3 . . .O − 1
proceed analogously and for each derivative j only the K̂ξc-sub-blocks of size
BO−j × BO−j have to be taken into account. Obviously, the zero blocks also
appear in the multiplication with the matrices A?, B? and C? from the right
and additional operations can be saved.

Dense vs. Sparse Kernels: (Breuer et al. [2])

• most kernels fastest, if executed as dense matrix multiplications
• exploit zero-blocks generated during recursive CK computation
• switch to sparse kernels depending on achieved time to solution

M. Bader et al. | High-Performance earthquake simulation on Xeon Phi | GPU 2016 | 27 Sep 2016 10



Sparse, Dense→ Block-Sparse
Consider equaivalent sparsity patterns: (Uphoff, [5])
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Code Generator: Instrinsics→ Assembler
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Code Generator – Programming Interface

db = Tools.parseMatrixFile(’matrices.xml’)

Tools.memoryLayoutFromFile(’layout.xml’, db)

arch = Arch.getArchitectureByIdentifier(’dhsw’)

volume = db[’kXiDivM’]

* db[’timeIntegrated’]

* db[’AstarT’]

+ db[’timeIntegrated’]

* db[’ET’]

kernels = [(’volume’, volume)]

Tools.generate(

’path/to/output’,

db,

kernels,

’path/to/libxsmm_gemm_generator’,

arch

)

Exploit efficient backend: libxsmm library [10]
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Floating-Point Performance (Haswell vs. KNC)
Single-node, 65,000 elements, 1000 timesteps, 6-th order
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Benefit of High Order ADER-DG – Energy-Efficient
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Fig. 3. L∞-error of variable σyz in dependency of the consumed energy for the HSW
machine in single- and double-precision.

fully reached, as we align the elements’ DOFs to the 32-byte boundary. This, in
general, imposes some overheads with longer vectors and switching from double
to single precision naturally doubles the vector length.

Finally, in Fig. 4 we evaluated the measured power-to-solution curves by
linear interpolation in log-log-space at 150 kJ for all architectures (using on-
demand frequency for WSM and SNB). For this energy budget we can now easily
compare the achieved accuracy depending on convergence order and architecture.
Note that we excluded settings beyond convergence and low order settings not
fitting into the memory of KNC due to slow convergence. Comparing O2 and
O7 on HSW we see an error reduction of five orders of magnitude. For the cross-
architecture comparison we select O6. According to Fig. 1 roughly the same
efficiency can be reached on all platforms. In this case the error is reduced by
a factor of 3.4 when switching from WSM to SNB and 4× when comparing
SNB to KNC and HSW. These findings align well with the Dennard scaling4

between SNB and HSW on an iso-frequency and iso-TDP level. From WSM to
SNB we even see a superior scaling. This is due to the fact that we use full-
box power measurements, but strictly speaking Dennard scaling applies to the
processor only. Other parts of the system became more power-efficient, too, such
that SNB clearly exceeds the WSM machine. One KNC coprocessor is able to
achieve the same energy efficiency as the entire HSW machine. The reason for
not (clearly) outperforming HSW is the (already analyzed) lower efficiency of
the matrix kernels. This emphasizes that for compute-bound applications the
fastest execution is also most likely the most energy-efficient one.

4 doubling the number of transistors doubles the amount of computations within the
same energy budget; number of transistors: WSM: 2×1.17 B, SNB: 2×2.26 B, HSW:
2×5.57 B

• mesasure maximum error vs. consumed energy
• for increasing discretisation order on regular meshes
• here: dual-socket “Haswell” server, 36 cores @1.9 GHz
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Benefit of High Order ADER-DG – Energy-Efficient
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Fig. 3. L∞-error of variable σyz in dependency of the consumed energy for the HSW
machine in single- and double-precision.

fully reached, as we align the elements’ DOFs to the 32-byte boundary. This, in
general, imposes some overheads with longer vectors and switching from double
to single precision naturally doubles the vector length.

Finally, in Fig. 4 we evaluated the measured power-to-solution curves by
linear interpolation in log-log-space at 150 kJ for all architectures (using on-
demand frequency for WSM and SNB). For this energy budget we can now easily
compare the achieved accuracy depending on convergence order and architecture.
Note that we excluded settings beyond convergence and low order settings not
fitting into the memory of KNC due to slow convergence. Comparing O2 and
O7 on HSW we see an error reduction of five orders of magnitude. For the cross-
architecture comparison we select O6. According to Fig. 1 roughly the same
efficiency can be reached on all platforms. In this case the error is reduced by
a factor of 3.4 when switching from WSM to SNB and 4× when comparing
SNB to KNC and HSW. These findings align well with the Dennard scaling4

between SNB and HSW on an iso-frequency and iso-TDP level. From WSM to
SNB we even see a superior scaling. This is due to the fact that we use full-
box power measurements, but strictly speaking Dennard scaling applies to the
processor only. Other parts of the system became more power-efficient, too, such
that SNB clearly exceeds the WSM machine. One KNC coprocessor is able to
achieve the same energy efficiency as the entire HSW machine. The reason for
not (clearly) outperforming HSW is the (already analyzed) lower efficiency of
the matrix kernels. This emphasizes that for compute-bound applications the
fastest execution is also most likely the most energy-efficient one.

4 doubling the number of transistors doubles the amount of computations within the
same energy budget; number of transistors: WSM: 2×1.17 B, SNB: 2×2.26 B, HSW:
2×5.57 B

• high order (“compute”) beats high resolution (“memory”)
• ≈35% gain in energy-to-solution for single precision,

but only for low order
M. Bader et al. | High-Performance earthquake simulation on Xeon Phi | GPU 2016 | 27 Sep 2016 15



Benefit of High Order ADER-DG – Compute-Bound
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• mesasured “GFlop/s” and “MFlop/s per Watt” for Westmere, Sandy
Bridge, Knights Corner and Haswell architectures [1]

• at selected clock frequencies and for different order
• preference towards high order and low frequency on newest architectures
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Part III

Accelerators – Dynamic Rupture
Simulation on Xeon Phi

Supercomputers

Heinecke, Breuer, Rettenberger, Gabriel, Pelties et al. [3]:
Petascale High Order Dynamic Rupture Earthquake Simulations on
Heterogeneous Supercomputers (Gordon Bell Prize Finalist 2014)
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On the Road from Peta- to Exascale?
SuperMUC @ LRZ, Munich

• 9216 compute nodes (18 “thin node” islands)
147,456 Intel SNB-EP cores (2.7 GHz)

• Infiniband FDR10 interconnect (fat tree)
• #20 in Top 500: 2.897 PFlop/s

Stampede @ TACC, Austin
• 6400 compute nodes, 522,080 cores

2 SNB-EP (8c) + 1 Xeon Phi SE10P per node
• Mellanox FDR 56 interconnect (fat tree)
• #8 in Top 500: 5.168 PFlop/s

Tianhe-2 @ NSCC, Guangzhou
• 8000 compute nodes used, 1.6 Mio cores

2 IVB-EP (12c) + 3 Xeon Phi 31S1P per node
• TH2-Express custom interconnect
• #1 in Top 500: 33.862 PFlop/s
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Optimization for Intel Xeon Phi Platforms

Offload Scheme:

• hide2 communication with
Xeon Phi and between nodes

• use “heavy” CPU cores for
dynamic rupture

Hybrid parallelism:

• on 1–3 Xeon Phis and host
CPU(s)

• reflects multiphysics
simulation

• manycore parallelism on Xeon
Phi

Host PCIe Xeon Phi

MPI comm.,
receiver output

dynamic rupture 
fluxes, fault output

plot wave field
(if required)

download cells for
receivers, DR, MPI

upload MPI-
received cells

upload dynamic
rupture updates

download all data
(if required)

time integration 
of non-MPI cells,

volume integration

time integration of
MPI boundary cells

wave propagation
fluxes

dynamic rupture 
updates,

pack transfer data
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Strong Scaling of Landers Scenario
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Strong Scaling of Landers Scenario
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• more than 85 % parallel efficiency on Stampede and Tianhe-2
(when using only one Xeon Phi per node)

• multiple-Xeon-Phi performance suffers from MPI communication
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Strong Scaling of Landers Scenario
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• 1.3 PFlop/s on SuperMUC (9216 nodes)
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Optimizing SeisSol for Xeon Phi (Knights Landing)
Heinecke, Breuer et al., ISC 16 [7]

Code Generation:
• 512-bit wide vector processing unit
• profits from Knights Landing optimization of libxsmm library [10]

Memory Optimization:
• examine impact of DRAM-only, CACHE and FLAT mode
• FLAT mode: careful placement of element-local matrices in local

MCDRAM (table from [7]):
10 Alexander Heinecke, Alexander Breuer, Michael Bader, and Pradeep Dubey

order Qk Bk,Dk Aξck , Â
−,i
k , Â+,i

k K̂ξc , K̃ξc , F̂−,i, F̂+,i,j,h

2 MCDRAM MCDRAM MCDRAM MCDRAM
3 MCDRAM MCDRAM MCDRAM MCDRAM
4 DDR4 MCDRAM MCDRAM MCDRAM
5 DDR4 MCDRAM DDR4 MCDRAM
6 DDR4 MCDRAM DDR4 MCDRAM

Table 1. Placements for all orders and the different data structures of SeisSol;
DDR4/MCDRAM denotes if a particular data structure is placed in DDR4/MCDRAM.

higher orders as they are bigger but have the same access frequency. These access
patterns allow to overcome size limitations of the 16 GB MCDRAM by placing
the ’slow-running’ data structures in DDR4. Therefore, in FLAT mode and for
higher order runs, we store Bk and/or Dk of every element into MCDRAM on
the fly via the memkind library when computing them. As both memory types
are seamlessly integrated into the architecture, we simply change the place of
allocation, but not our macro-kernels. Thus pointers to Bk and/or Dk reference

memory physically stored in MCDRAM whereas Aξck , Â
−,i
k , Â+,i

k , Qk reside in the
DDR4 portion of the address space for orders O = 5 and O = 6. Additionally,
we hold unique matrices, K̂ξc , K̃ξc , F̂−,i, F̂+,i,j,h, including the 48 flux matrices
required for neighboring elements’ contribution to the surface kernel (7), in MC-
DRAM as well, as we expect local L2 cache evicts for higher orders. For lower
orders, two to four, the bandwidth requirements of SeisSol for the element local
matrices and Qk increase. We therefore allocate more data structures in MC-
DRAM. In fact, for orders O = 2 and O = 3, all important data structures are
placed in MCDRAM. Table 1 summarizes the used placements, when running
on KNL in FLAT mode.

4.3 Optimizing the Mesh Traffic and Prefetching

KNL’s last level cache (LLC) is not a shared cache level as it is implemented
by a 2D mesh of up to 36 1 MB large slices of L2 caches, c.f. Sect. 2. These
slices are kept coherent by a distributed tag directory in each tile’s CHA. As we
pointed out in the last section, for higher orders than four, the 48 flux matrices
F+,i,j,h approach (500 KB for order five) or even exceed the size (1.5 MB for
order O = 6) of one tile’s L2 cache. This can negatively effect the performance
of (7) for two reasons: a) especially for order O = 6 this results into a high rate
of CHA-to-CHA communication as the unstructured mesh causes unstructured
accesses to the flux matrices b) the hardware prefetcher cannot pick-up the
unstructured accesses. Keeping the last section in mind, we know that we still
have plenty of MCDRAM bandwidth available in higher orders. Therefore, we
place several copies, one per two tiles, in MCDRAM. This ensures that the mesh
traffic gets equally distributed and the access latency may not be limited by
one CHA in the entire mesh holding the directory entries for one particular
flux matrix. Additionally, we are using modified matrix kernel operations in (7),

→ see “KNL Book” [8] for details
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Performance Results on Knights Landing
Heinecke et al., ISC 16 [7]
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Fig. 9. Normalized time-to-solution speed-up over HSX for KNC and KNL and orders
2-6 when simulating the 1992 Landers scenario using global time stepping.

would easily fit into MCDRAM any time as the total memory consumption at
order 6 is 7.1 GB.

The GTS performance of the 1992 Landers setup is provided in Fig. 9. As
this is a multi-physics scenario, we expect slightly lower performance than for
the earlier pure wave propagation runs on a many-core processor. This is due
to the fact that the dynamic rupture portion of the solver requires high scalar
performance. Here, KNL’s increased single-thread performance becomes visible.
KNL reassembles more than 92% of the pure wave propagation speed-up over
HSX whereas the previous generation KNC chip is only able to attain 83%. This
results into a relative performance which is comparable to HSX. KNL’s time-to-
solution speed-up for executing the 1992 Landers earthquake simulations is 2.5
- 2.9 × depending on the chosen order.

6 Conclusion

In this article, we presented a holistic optimization of SeisSol, a multi-physics
simulation package for seismic simulations, which tightly couples seismic wave
propagation, and dynamic rupture processes. First, we presented a deep-dive
into KNL’s architectural features and their challenges and opportunities for
high-performance software. After a brief recapitulation of SeisSol’s mathemati-
cal background, we discussed in detail how to exploit KNL’s two VPUs per core
efficiently and to leverage both memory subsystems for a novel out-of-core imple-
mentation in SeisSol’s high-order wave propagation solver. The KNL-optimized
implementation was evaluated for three different scenarios with distinct chal-
lenges and sizes. In case of global time stepping runs, KNL was able to out-
perform its predecessor, KNC, by 2.9 × and the current most powerful Intel
Xeon processor, E5v3, by more than 3.4 ×. Even more important, in contrast to

Landers scenario, 466,574 elements
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Part IV

Current Work – Simulations in
Symmetric Mode on Salomon

Salomon: 2 PFlop/s supercomputer (432 nodes with 2 HSW + 2 KNC)
at IT4Innovations supercomputing centre, Ostrava

Rettenberger, Uphoff, Rannabauer;
Project CzeBaCCA: Czech-Bavarian Competence Centre for Supercomputing

Applications
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Modify Mesh Input and Load Distribution

Scalable Mesh Partitioning and Input Pipeline:

Gambit
Mesh File

PUMGen

ParMETIS

Simulation Modeling
Suite C++ API

SimModeler/
GAMBIT

CAD Model

Parallel Mesh Generation

Serial Mesh Generation

Towards Symmetric Mode:

• Modify weights for METIS graph partitioning:
compensate speed differences between host CPU and Xeon Phi

• Work in progress: modify input of meshes
→ Xeon Phi mesh partitions may be read by host and sent via MPI
→ in case of bad I/O bandwidth (library support) of Xeon Phis
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Work in Progress: Modify Wave Field Output
Aggregation of MPI ranks to speed up I/O: (Rettenberger [4])

SeisSol

HDF5

Tasks

Blocks on
File System

Mulitple processes
writing to one block

One process
writing to mulitple blocks

. . .0 1 2 3 4 5

SeisSol

HDF5

Tasks

Blocks on
File System

... Aggregation

I/O Tasks

0 1 2 3 4 5

0 3 6

. . .

. .

Towards Symmetric Mode:

• Output routines aggregate data from several MPI ranks
→ match I/O block size to achieve substantial speedup

• Only use host MPI ranks for output
→ again in case of bad I/O bandwidth (library support) of Xeon Phis
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First Runs on Salomon – Native and Symmetric
Setup: LOH4 benchmark, 250k elements, order 6, no output yet
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Part V

Conclusions and Outlook
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Conclusions
Performance Optimisation on Multi&Manycore Platforms:

• high convergence order and high computational intensity of ADER-DG
→ compute-bound performance on current and imminent CPUs

• code generation to accelerate element kernels
• careful tuning and parallelisation of the entire simulation pipeline

(scalable mesh input, output and checkpointing)

Xeon Phi Platforms

• offload scheme scaled to 1.5 million cores (Tianhe-2, Stampede)
• our assumption: heterogeneity will prevail; off-loading not necessarily
• our goal: scale in symmetric mode on KNC-based supercomputers
→ current work on SuperMIC and esp. Salomon

• heterogeneity challenges exist in load balancing and scalable I/O
• SeisSol runs on Knights Landing→ ISC’16 [7] and KNL-Book [8]
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