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I GPU in High Energy Physics

(Many applications of GPU in High Energy Physics]

Offlme Data AnaIyS|s

Monte Carlo simulation

attic QCD calculations

Multi-body simulation in
Astrophysics
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HEP experiment at colliders

Acceleration and collisions of proton - (antijproton cross sections
particles (e.g. LHC, Tevatron, 10 g . ;
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Multipurpose detector to re- ' Vs (Tev)
construct most of the colli-

sion information

Interesting events are only
1/107~12: need to reject mo
st of the others.

Realtime selection plays
a fundamental role
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Data-Aquisition systems in LHC experiment

e 145000

Event size: 1-2 MB, 40 MHz: 40 TB/s
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Event size: 100 kB, 40 MHz: 4 TB/s
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I Future upgrades

Run 1 Run 2 Run 3

Energy (v/s) 7/8TeV. 13 1eV 14 TeV

Peak Luminosity (cm™2s~") 1034 1510  2-3.10%
Interactions/bunch crossing 30 23 55-80 <« pileup
Bunch crossing rate 20MHz 40MHz 40 MHz

Offline Storage rate 600 Hz 1000 Hz 1000 Hz

Bunch spacing 50 ns 25ns 25ns

¢

Data-taking conditions will be more and more demanding in the upcoming years
@ Higher collision rates
@ Higer number of multiple overlapping events (pileup)
@ Detector upgrades might increase event size

» Processing latencies should remain almost the same O(100 ms)
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Realtime event selection systems: ATLAS example

Event rates Trigger DAQ Data rates
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Single-Threaded Integer Performance

@ Multi-stage system based on hardware (LLT) and
software (HLT)

@ CPU computing power reaching saturation: change
of paradigma toward parallel computing
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Realtime event selection systems: AT

Event rates Trigger DAQ Data rates
design design
Muon| | Calo | |Track
40 MHz ATLAS Event
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@ Multi-stage system based on hardware (LLT) and
software (HLT)

@ CPU computing power reaching saturation: change
of paradigma toward parallel computing

@ Try to include GPUs in trigger systems
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Algorithm parallelization on GPU

@ Pattern-recognition algorithms suitable for
parallelization (SIMD)

e.g. Different color — Different core

GPU
H B serial cPy
B [ Farallel IIII
E
-—
Multiple
Cores

Hundreds of Gores

Nepus
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Algorithm parallelization on GPU

@ Pattern-recognition algorithms suitable for
parallelization (SIMD)

@ memory usage is a limitation: small amount
available, overhead for data cross-reading
algorithm.

e.g. Different color — Different core

3 Parallel
I serial

M Paraliel Overhead GPU
CPU

Multiple
Cores

Walltime

Hundreds of Cores

1 2 a 8 Nepus
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Algorithm parallelization on GPU

@ Pattern-recognition algorithms suitable for
parallelization (SIMD)

@ memory usage is a limitation: small amount
available, overhead for data cross-reading

algorithm.

@ Multi-event parallelization is a BONUS!

e.g. Different color — Different core

Walltime

3 Parallel
I serial
I Parallel Overhead

1 2 a 8 Nepus

GPU
CPU

Multiple
Cores

Hundreds of Cores
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GPU deployment in trigger systems

» Main questions that need an answer:

@ How to integrate a GPU in a pre-existing data-taking
software?

» Need to redesign software from scratch?

@ How fast can a GPU be within time constraints from the
DAQ system?

> i.e. how low can you go in the trigger levels?

© What algorithms get the best from parallelization on
u?

» Existing ones are suitable for parallelization?
» How innovative ones compare in terms of efficiency?
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Prototype for a GPU-based ATLAS trigger

@ Aim at the evaluation of benefit and disadvantages

> Need to suppress increase in CPU time due to pileup
> Limit on HLT farm size from cooling and power
» Evaluate processing time/event per unit cost

@ Investigation on trigger algorithm for Inner Detector
(tracking), Calorimeter clustering, Muon segment
reconstruction

(Server with NVidia Tesla K80

@ 2 chips in each card @ 2496 CUDA cores

@ 2 GB RAM @ 824 MHz GPU, 2505

@ 13 multi-processor MHz memory clock
@ 192 cores per

| multiprocessor

J
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Integration scheme

Flexible client-server architecture

Client side

( Athena)
= & »| TrigDetAccelSvc

o Tk

OffloadSvc I

Data+Metadata

Server side

APE Server

To-do Queue

GPU Module
- Manages GPU Resources
- Add workers to queue

re /
Fri ork =
) < Resul
TrigDataTools N
data conversion tools
<—> Standard HLT data structures
4—» Lightweight GPU data structures
N

(Client:

@ One HLT processing unit per core
@ Offline & Online framework

(Athena)
> manage data

> execute chains of algorithms
> monitors data-processing

Done Queue

Histogram Tools

-
GPU workers
< 1

I FPGA workers I

‘ Other Modules ‘ I Xeon-Phi workers I

Timer Tools
—
Config. Tools
Server:

@ Independent from Client framework

@ Flexible hardware resources
management (multi-devices)

@ Preallocate memory for data and store
constants
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Inner Detector

Tracking is the most time consuming algorithm

Bytestream Hit Track Track Clone
decoding clustering seeding Following //Removal

@ Sequential steps: silicon hit clustering, seeds creation, track following
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I Inner Detector s

Tracking is the most time consuming algorithm

Bytestream Hit Track Track Clone
decoding clustering seedlng Followmg Remova

@ Sequential steps: silicon hit clusterlng seeds creation, track following
@ Parallelization on GPU of track-seeding
@ Huge data multiplicity for a full-detector scan tracking: a GPU makes it feasible

seed making . ~
/ i _, < °
track following - -
10° spacepoints 10° triplets 10* seeds 108 tracks

Pair formation: 2D thread array checking

o " Triplet formation through 2D thread block
for pairing conditions
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I Inner Detector s

Tracking is the most time consuming algorithm

Bytestream Hit Track Track
decoding clustering seedlng Following

(Track following also may benefit)

Clone
Remova

@ Sequential steps: silicon hit clusterlng seeds creation, track following
@ Parallelization on GPU of track-seeding
@ Huge data multiplicity for a full-detector scan tracking: a GPU makes it feasible

seed making . ~
/ i _, < °
track following - -
10° spacepoints 10° triplets 10* seeds 108 tracks

Pair formation: 2D thread array checking

o " Triplet formation through 2D thread block
for pairing conditions
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Inner Detector

< T T T < T T 5
'g - ATLAS Simulation 1 g 10* -ATLAS Simulation
§ * 1, V5=14 TeV, <u>=46 « GPU algorithm 8 ff, /5=14TeV, <u>=46 " « GPU algorithm
£ 101 - CPUrefrence | £ 10°L {1 . CPUreference
w ] w H
GPU algorithm has ] 107 g
same efficiency and 1 ot 5.
resolution as CPU one I Oyttt :
o ERN 5 %!
35 I e ) 05 i 15
track P, [GeV] track d, [mm]

@ Algorithm execution time reduced by a factor ~5
@ Small data transfer overhead: ~0.6%

Inner Detector Track Seeding on CPU Inner Detector Track Seeding on GPU

Athena Athena Conversion
CPU->GPU 0.4%
Conversion
~—— i GPU-CPU 0.1%

Data Transfer 0.1%

72.3%

IPC 0.4%

Time perevent 1.6s Time perevent1.2s
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I Calorimeter 5

Algorithm needed to asso-
ciate energy deposits from
the same shower of parti-
cles (hadronization)
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Calorimeter

@ Topological Calorimeter Cell Clusters reconstruction on CPU: ~ 8% of total time
» Cells are grouped according to their signal-to-noise ratio

Xl x| x X

X | X|X|X X

x| x | xi>x

X | X |X X X
X

X | X

. Seed

Growing

) Terminal
Not enough
SIN

Not
evaluated

><><><|

@ Topo-Automaton Clustering on GPU to maximize parallelism

» Propagation of a flag through a grid of elements (cell pairs)
» Cells get the largest flag and continue until no flag changes

M. Bauce

GPU in HEP online event selection 27 settembre 2016 14/22



Calorimeter

entries / bin
<
"

" ATLAS Simulation
— CPU clusters E,
<Ep=

----- GPU clusters E,
<Ep

Monte Carlo 14 TeV di-jet events <u>=40

0.907 GeV.

0.912GeV.

FET BT |
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E, [GeV]

@ 30% reduction for di-jet events with 40 interactions/bunch-crossing(u), x3

3 ‘USEL‘ L amassimuiation A

g E Monte Carlo 14 TeV di-jet events <u>=40  —

- £ F — CPUnumberofjets

< En_ergy difference | =° 10 e
<5% in most clusters b s
IOL *:

» no significant effect f
on jet reconstruction L T || -
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8

number of jets / event

reduction for tt with =138
@ Data-format conversion reduce the benefits
@ Potential larger gain from parallelization of following clusterization steps

Calorimeter Clustering on CPU

Athena

91.8%

Time per event 1.02's

tering

8.2%

Calorimeter Clustering on GPU

Conversion
CPU->GPU 0.2%.

Data Transfer
0.1%

Athena

GPU Clustering
95.9%

~44ms 4.1% = 0.05%

Time per event 1.06 s
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Muon reconstruction

\///RPC %’haﬂ\/

h“ (‘

» Muon segment reconstruction through Hough
Transform

@ algorithm translates track finding to maxima finding
@ Filter hits and fill Hough parameter space

@ Select maxima above a given threshold and
reconstruct track parameters

\\\O:

( Development ongoing - public results expected soon j
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» Testing E5-2695 v3 14-core vs. 1(/2) NVidia K80 GPU

@ 20-40% gain in throughput, depending on the

Overall performances

number of processes running

@ 1 GPU saturation when serving 14 clients (no
performance loss)

@ Slight benefit from the additional GPU

Event Rate (GPU) / Event Rate (CPU)
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ALICE tracking

1s — 300 ms reduction by de-
ploying GPU in TPC tracking sy-

stem ]
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Considering improvements and modification to the trigger scheme for the experiment
upgrades.

(more info in talk from D. Rohr )
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LHCb - toward a triggerless approach

40 MHz bunch crossing rate

< U I @ For HL-LHC aim at a

LO Hardware Trigger : 1 MHz trigger|ess scheme
readout, high Er/Pr signatures
(no hardware)

@ GPU deployment can
s,,;,U'Hg.. L?Qg SV B boost software
' ' trigger level

@ Evaluation in

Partial event reconstruction, select
displaced tracks/vertices and dimuons

dakactor cuibcaton pnd Apusssas. progress to minimize

: L} : communication
([Pt i e v setion moctare latencies and
L I I throughput

Focusing on vertex reconstruction and tracking algorithm »

@ VErtex LOcator detector fundamental for displaced
vertices detection

@ Tracking in muon detectors

30 MHz inelastic event rate
and full event rate building

LLT : 15-30 MHz output rate,
select high Er/Pr (h*/p/e/y)

. Software High Level Trigger

[ Full event reconstruction, inclusive and ]

Run-by-run detector

calibration

[Add offline precision particle i i i
and track quality information to selections

31> JdI3F 11
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LHCb performance tests

[Communication latencies only )
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NAB2 - a low-level trigger application

Mirror Mosaic (17 m focal length)

2024 TDC channels,

4TEL62

Vessel diameter 4—-3.4 m
Volume ~ 200 m* Beam Pipe

2 x~1000 PM

Improved RDMA scheme allowed to increase throughput
5 h = and deploy GPU in low-level trigger (smaIIer event size)
°e
3 oo [ RN move Dt B e et
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s % 1200 L — NaNet-1 moves Data to GPU memory (GPUDirect v2) 1
5 % 1000 |
g
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I Conclusions

» Parallelism in realtime selection system is a must: GPUs deployment is crucial

@ GPU integration can be achieved in a transparent way
» Client-Server architecture: the most flexible solution for DAQ
existing frameworks
» New experiment can deploy different scheme, no constraints
» Careful design of EDM needed

@ Communication overhead latencies define the feasibility domains .

» High-level trigger applications accessible for typical HEP I
experiment sizes (latencies O(100 us — 100ms)) —

» From the detector to the GPU in Low-level trigger application,
achieved thanks to dedicated interface cards

@ Algorithm optimization can add gain in parallelization
» Several developed for pattern recognition algorithms (Hough
Transform, Cellular Automaton, ...)
» Neural Networks (and MVA) might come into the game in the future
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