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Quantum Chromodynamics (QCD)

From the Oxford dictionary point of view:

A quantum field theory in which the strong interaction is described in
terms of an interaction between quarks mediated by gluons, both quarks
and gluons being assigned a quantum number called “colour”.

From the theoretical physics point of view:

LQCD = −
1

4
G a
µνG

aµν +
∑

f

ψ̄f (iγµDµ −mf )ψf

with f ∈ {u, d , s, c , b, t}. Parameters: the dimensionless coupling g and
the masses mf of the six quark flavours.
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Quantum Chromodynamics (QCD)

Naive point of view

We know the Lagrangian of QCD: we know everything about QCD.

In practice the standard method used in theoretical high-energy physics to
obtain quantitative predictions is perturbation theory:

in QED the coupling at low energy is αem ≡ e2/(4π) ≃ 1/137

in QCD the coupling at low energy is αs ≡ g2/(4π) ≃ 1

Asymptotic freedom / Infrared slavery

If E ≫ 1GeV the theory is perturbative and
usual methods work.

If E . 1GeV the theory is nonperturbative.

from hep-ex/0606035
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Why bothering of low energy QCD?

Free quarks have never been directly observed in nature. Quarks are
confined into hadrons and the typical scale of light hadrons is about
1GeV. If we want to connect the fundamental theory with the real
world we need low-energy QCD.

◮ does QCD Lagrangian imply quark confinement?
◮ can we predict the masses of hadrons?
◮ ab-initio nuclear physics?

What about thermodynamics? At T = 0 we experimentally observe
confinement, at high energy the coupling gets smaller and smaller: the
existence of an high temperature deconfined phase seems reasonable.

◮ does a high temperature deconfined phase actually exist?
◮ does a phase transition exist at finite temperature?
◮ can we predict the thermodynamical properties of strongly interacting

matter?
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Lattice QCD (LQCD)

Quantum Field Theories (QFT) and Statistical Physics (SP) are much
more similar than they look at first sight:

QFT←→ e i
∫
Ld3xdt Feynman path integral

SP←→ e−E/T Boltzmann distribution

If we use t = iτ (i.e. we use an imaginary time, Wick rotation), then
QFT becomes formally identical to SP, modulo the identification

∫

LEd
3xdτ ←→ E/T (with LE (x , τ) = L(x , t))

The statistical physics side of QFT: the values of the field at every point of
the space-time are random variables with distribution exp(−

∫

LEd
3xdτ).

To use standard Monte Carlo methods we need a finite dimensional
distribution so we use a space-time discretization: a lattice.
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LQCD: does it work?
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It works very well for a lot of stuff!
Notable exceptions:

QCD at finite density

kinetic coefficients
(viscosity, conductibility,. . . )
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LQCD: why is it difficult?

Scale separation

The “typical scale” of nonperturbative QCD is ΛQCD ≈ 1GeV, the masses
of the first four quark flavours are mu ≈ 0.002GeV, md ≈ 0.005GeV,
ms ≈ 0.1GeV, mc ≈ 1.3GeV.
To obtain reliable results we must have control on energies that span
around four order of magnitudes.
(problem analogous to the one of ab-initio quantum chemistry)

The interaction is very complicated

The distribution we have to sample in the Monte Carlo is of the form
P(A) ∼ det[M(A)]e−SG (A), where SG (A) is an “easy” (almost) next
neighbourhood interaction and M(A) is a large, sparse and structured
matrix.
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LQCD Monte Carlo algorithm

We have to sample the Boltzmann distribution with energy

E ∼ SG (A) + log[detM(A)] ∼ SG (A) + φ†
1

M(A)†M(A)
φ

The standard algorithms of statistical mechanics are:

Metropolis algoritmh change randomly the configuration, compute ∆E ,
accept the new configuration with probability exp(−∆E/T ).

Molecular/Langevin Dinamics integrate numerically the equations of
motion (eventually with stochastic noise).

Drawbacks of these algorithms:

for the acceptance probability to be reasonable, only small local
updates have to be performed, but the energy is very non-local and
the computation of ∆E scales badly with volume (∼ V 3).

M(/L)D is computationally cheaper since the update is global, but it
is not stochastically exact: we need the limit ∆t → 0.
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LQCD Monte Carlo algorithm

Hybrid Monte Carlo (HMC): we first of all add fictitious momenta that
enter quadratically in the energy of our system, then (starting from xi )

generate the initial momenta pi with gaussian distribution

compute the initial energy Ei

evolve the variables by numerically solving the EoS in the fictitious
time (and arrive to xf , pf )

compute the final energy Ef

accept the update (xi , pi )→ (xf , pf ) with probability exp(−∆E/T )

Such an algorithm takes the best of Metropolis and MD: it is a global
stochastically exact algorithm.
If the integration step is too coarse, the acceptance probability degrades,
but the algorithms always converges to the correct result.
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HMC: the hard step

To compute the force in the MD step of HMC one has to solve

M(A)x = b (or variants of it)

where b is a random vector. Some general properties of M(A) are:

it is a large sparse matrix, typically of order 106 × 106

(the order is directly proportional to the physical volume)

it is a structured matrix, the basic blocks being SU(3) matrices
(because there are 3 color charges)

it is ill conditioned (κ & 105)
(because mu,d ≪ ΛQCD and chiral symmetry breaking)

This equation has to be solved O(10) times for a single HMC step, and
O(105 ÷ 106) HMC steps can be necessary.

C. Bonati Lattice QCD & GPU Roma 2016 11 / 18



The CG and its friends

The most used methods to solve the equation Mx = b are Krylov solvers.
The prototypical example is the Conjugate Gradient method:

x0 arbitrary starting point;
r0 = p0 = b −Mx0;
while ‖rn‖ > ǫ do

βn = −‖rn‖
2
/

(pn,Mpn)
xn+1 = xn − βnpn

rn+1 = rn + βnMpn

αn+1 = ‖rn+1‖
2
/

‖rn‖
2

pn+1 = rn+1 + αn+1pn
end

The fundamental operation that need to be optimized to achieve high
performance is the matrix · vector operation.
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LQCD on GPU

Since the building blocks of LQCD are linear algebra operations, GPU
appears as perfect candidates for LQCD simulations.

The seminal work that used GPU for LQCD purposes was

G. I. Egri, Z. Fodor, C. Hoelbling, S. D. Katz, D. Nogradi and K. K. Szabo,
Lattice QCD as a video game
Comput. Phys. Commun. 177, 631 (2007) [hep-lat/0611022].

that appeared the 21st November 2006, in which OpenGL (GL not CL!)
was used. The 23rd June 2007 the first CUDA release appeared and the
first LQCD application of CUDA was

K. Barros, R. Babich, R. Brower, M. A. Clark and C. Rebbi,
Blasting through lattice calculations using CUDA
PoS LATTICE 2008, 045 (2008) [arXiv:0810.5365 [hep-lat]].

(Babich and Clark now work at Nvidia)
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The main obstacle: bandwidth

The elementary blocks of the M(A) matrix are 3× 3 complex matrices.
If we consider a single precision computation, the product

(3× 3 complex matrix) · (complex 3−vector)

requires 72 floating number operations and 96 bytes of memory transfer.
This operation (and thus the whole algorithm) has low computational
intensity and the algorithm is strongly bandwidth limited.

E.g. on Nvidia K80 the maximum bandwidth is 480 GB/s and the peak
performance in single precision is 8.7Tflops. The maximum expected
performance is around 0.4Tflops, i.e. around 5% of the peak.

Double precision relative effectiveness is slightly better (the effective
bandwidth is halved but the peak performance is reduced by more than a
factor of two, being 2.9Tflops) but in absolute terms it is a factor 2 slower
than the single precision.
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Partial workarounds

We know that the 3× 3 complex matrix is in fact an SU(3) matrix,
thus the third row can be computed on fly as the vector product of
the first two rows. In this way we gain a factor 4/3 in efficiency.
In principle one could do even better, since only 8 real numbers are
required to uniquely identify an SU(3) matrix, however the
reconstruction algorithm is not stable enough in this case.

Use mixed precision Krylov solvers (a.k.a defect-correction or reliable
updates algorithms). The idea is that Krylov algorithms are very
stable, so much that it is possible, with minor changes, to obtain an
high precision result using almost always low precision operations. It
is thus possible to use

half precision→ single precision→ double precision

Warning: mixed precision cannot be used in case we need to solve
(M + σi )x = b for several σi since shifted Krilov solvers cannot be
restarted.
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Memory layout

The “natural” memory layout for a LQCD code would be an Array of
Structure (AoS), with “structure”=SU(3) matrix, however to achieve high
performance it is important to use a Structure of Array (SoA) memory
layout.

On old GPU architectures SoA was absolutely fundamental to have
coalesced memory accesses (and also textures helped). More recently this
constraint has been largely reduced, however it is still strongly suggested
to prefer SoA to AoS.

Possible bonus: on old CPUs there was no real gain in using SoA, and in
fact it was sometimes worst than AoS. Massive vectorization in CPUs
(e.g. Intel KNL) is changing this: the strategies suggested by CPU vendors
to write efficent code by now resemble very much the ones for GPU.
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Single code for heterogeneous architectures?
OpenCL First proposal for an unified language for CPUs and GPUs.

It is structurally very similar to CUDA and apparently Nvidia
does not like it very much. . .

OpenACC Programming standard that uses compiler directives, it is
basically a multi-architecture version of OpenMP.

Advertising: “Initial OpenACC implementation required only minor effort,
and more importantly, no modifications of our existing CPU
implementation”. In red Nvidia emphasis, in blue my emphasis.

In the Pisa/Ferrara collaboration we now have a complete working
MPI/OpenACC LQCD code and we are going to

compare its performance w.r.t. the previous CUDA version of the code
(preliminary results indicate a loss of performance around 20%)

compare the performances on different architectures: Nvidia GPU,
ATI GPU, Broadwell CPU, Knights Landing, . . .
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Conclusions

Lattice QCD is at present the only method to extract systematically
improvable first-principle results concerning strong interactions in the
non-perturbative regime.

To perform reliable LQCD simulations requires a tremendous amount
of computing power.

In the LQCD community there is a strict connection between the
development of new physical insights, the introduction of new
algorithms, the building of new machines and the efficient
implementations of the algorithms on the target machines.

It will be interesting to see how different accelerator technologies that
now are competing with each other will likely mix together in the
future.
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Thank you for your attention!
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