Regional Scale Earthquake Simulations on OLCF Titan and NCSA Blue Waters

> Yifeng Cui, SDSC - a SCEC collaboration GPU'16, Rome, Sept 26-28. 2016

Peak horizontal ground velocity

200

400 cm/s

SCEC Collaborators

²¹ Thomas Jordan

200 km

Kim Olsen

Steve Day

Christine Goulet

Philip Macheling

44 Oxnard

Computing Resources

NSF Blue Waters, DOE INCITE (Titan, Mira), NSF XSEDE (Stampede, Comet)

Grants/Awards

NSF SI2-SSI, PRAC, SCEC/USGS and XSEDE Keck Foundation, Intel, NVIDIA

Prediction Problems of Earthquake System Science

The goal of operational earthquake forecasting is to provide the public with authoritative information on the time dependence of regional seismic hazards

- Thomas H. Jordan

Why choose AWP-ODC?

(a)

https://github.com/HPGeoC/awp-odc-os

- Started as personal research code (Olsen 1994)
- 3D velocity-stress wave equations

$$\partial_t \mathbf{v} = \frac{1}{\rho} \nabla \cdot \boldsymbol{\sigma} \quad \partial_t \boldsymbol{\sigma} = \lambda (\nabla \cdot \mathbf{v}) \mathbf{I} + \mu (\nabla \mathbf{v} + \nabla \mathbf{v}^{\mathrm{T}})$$

solved by explicit staggered-grid 4th-order FD

 Memory variable formulation of inelastic relaxation using coarse-grained representation (Day 1998)

$$\sigma(t) = M_{u} \left[\varepsilon(t) - \sum_{i=1}^{N} \varsigma_{i}(t) \right] \quad \tau_{i} \frac{d\varsigma_{i}(t)}{dt} + \varsigma_{i}(t) = \lambda_{i} \frac{\delta M}{M_{u}} \varepsilon(t)$$

$$Q^{-1}(\omega) \approx \frac{\delta M}{M_{u}} \sum_{i=1}^{N} \frac{\lambda_{i} \omega \tau_{i}}{\omega^{2} \tau_{i}^{2} + 1} \quad \text{When } \delta M \ll M_{u}$$

solve for $\frac{\lambda_i}{M_u} \lambda_i$ using linear least squares to fit a target Q(f) (Withers et al., 2015)

$$Q(f) = Q_0 \cdot \left(\frac{f}{f_0}\right)^{\gamma}$$

- Dynamic rupture by the staggered-grid split-node (SGSN) method (Dalguer and Day 2007)
- Absorbing boundary conditions by PML (Marcinkovich and Olsen 2003) and Cerjan et al. (1985)

(1)

OLCF Titan and NCSA Blue Waters

ORNL's "Titan" Hybrid System: Cray XK: with AMD Opteron and NVIDIA Tesla

SYSTEM SPECIFICATIONS:

- Peak performance of 27.1 PF (24.5 & 2.6)
- 18,688 Compute Nodes each with:
 - 16-Core AMD Opteron CPU (32 GB)
 - NVIDIA Tesla "K20x" GPU (6 GB)
- 512 Service and I/O nodes
- 200 Cabinets
- 710 TB total system memory
- Cray Gemini 3D Torus Interconnect

SC//*EC*

Inference Spiral of Earthquake Prediction

• Earthquake system science requires an iterative, computationally intense process of model formulation and verification, simulation-based predictions, validation against observations, and data assimilation to improve the model

• As models become more complex and new data bring in more information, we require ever increasing computational resources

Validating New Physics for High Frequency

Validating New Physics for High Frequency

Validating New Physics for High Frequency

Nonlinear Material Response

In the fault damage zone

 caused by high stresses at rupture front 32000 leads to flower-like damage zone around the fault 16000 0 0 -4000 Z (m) -8000 12000 6000 LOG 10(Eta) (-) N-S (m) 4.0 -3.5 -3.0 -2.5 -2.0 (Roten et al., 2014)

In shallow sedimentary deposits

- caused by hysteretic stress-strain relationship in soft soils
- leads to a reduction in amplification

$$\mathbf{A}(f) = \frac{\mathcal{F}(S(t))}{\mathcal{F}(R(t))}$$

Return map algorithm in AWP-ODC

(Barall 2014, Roten et al., 2014, 2015, 2016)

Mean stress:

$$au_m = rac{1}{3}(\sigma_{11} + \sigma_{22} + \sigma_{33}) = rac{I_1}{3}$$

Stress deviator:

$$s_{ij} = \tau_{ij} - \tau_m \delta_{ij}$$

Second invariant of stress deviator:

$$J_2=rac{1}{2}\sum_{i,j}s_{ij}s_{ji}$$

Drucker-Prager yield stress:

$$Y(au) = \max \left(0, \ c \ \cos \varphi - (au_m + P_f) \sin \varphi
ight)$$

Drucker-Prager yield function:

$$F(\tau) = \sqrt{J_2(\tau)} - Y(\tau)$$

methodCPU timeNormalizedElastic0.176100%Individual interpolation (EP1)0.676384%Yield factor interpolation (EP2)0.290165%

Linear + 11 variables -> 5 var -> 3 var

Yield factor r:

$$r = rac{Y(au^{ ext{trial}})}{\sqrt{J_2(au^{ ext{trial}})}}$$

Adjusted stress:

$$\tau_{ij} = \tau_m^{\rm trial} \delta_{ij} + r s_{ij}^{\rm trial}$$

Yield factor r with viscoelastic relaxation time T_v :

$$r = \frac{Y(\tau^{\text{trial}})}{\sqrt{J_2(\tau^{\text{trial}})}} + \left(1 - \frac{Y(\tau^{\text{trial}})}{\sqrt{J_2(\tau^{\text{trial}})}}\right) \exp \frac{-\Delta t}{T_v}$$

HPGeoC SDSC

Why choose GPU?

Create a SCEC broadband CyberShake hazard model for all of California Computational requirements for 1400 sites across California

The CS14.2 study launched on Blue Waters in 2014, 0.5 Hz deterministic,

2 components

- XE6/XK7 nodes used: 1620, or 49,280 cores
- Jobs submitted: 31,463
- Number of tasks: 470 million
- Storage used: 57 TB
- Allocation hours: 16 M (CPUs + GPUs)

The statewide CyberShake hazard model will comprise 1.8 billion seismograms

The CS 15.4 study on BW and Titan in 2015, 1.0 Hz deterministic, 2 components

- XK7 nodes used: 13,500
- Jobs to submit: 4,372
- Number of tasks: 575 million
- Storage used: 446 TB
- Allocation hours: 13.5 M (GPUs) + 14 M (CPUs)

Go Green

NOAA, U.S. Navy, NGA, GEBCO © 2012 Google nage © 2012 TerraMetrics © 2012 INEGI

The entire CA CS study in plan, 1.5 Hz <u>deterministic</u> + stochastic, 3 components

- Turnaround: 16 days
 - XK7 nodes to use: 17,400
- Jobs to submit: 51,000
- Number of tasks: 1.73
 billion
 - Storage used: 8 PB
- Allocation hours: 160
 million (GPUs)

Flops to Bytes Ratio of AWP-ODC Kernels

GPU Code: Decomposition on CPU and GPU

- Two-layer 3D domain decomposition on CPU-GPU based heterogeneous supercomputers
 - first step X&Y
 decomposition for
 CPUs
 - second step Y&Z
 decomposition for
 GPU SMs

Single-GPU Optimizations

Blue Waters PAID Project

Optimization strategies

- Increasing occupancy to hide memory latency
- Reducing redundant halo accesses by using texture cache combined with register queues
- Velocity Kernel
 - Increasing the block size
 - More register queueing, allow read-only array accesses to use texture cache
- Stress Kernel
 - Shared memory to optimize accesses to velocity arrays
 - Texture cache with register queuing
 - 65% in DRAM throughput and access fraction of 80% after optimization

Plasticity Kernel

- optimized block size
- Sufficient number of active threads
- Read-write array accesses replaced with register queues
- 75% in DRAM throughput and access fraction of almost 100% after optimization

	Execution Time (speedup) unit:ms						
	Baseline	Optimized	Multiple Stream	DRAM Bandwidth			
dstrqc	65.56	58.957 (x1.11)	58.957	65%			
drprecpc _calc	27.604	18.795 (x1.47)	18.795	75%			
dvelcx	21.295	20.09 (x1.06)	20.09	65%			
other kernels	4.472	4.472	1.922				
MPI	6.972	6.972	overlapped				
data transfer	10.513	10.513	overlapped				
full iteration	136.416	119.799 (x1.13)	99.764 (x1.37)				

A collaboration with Prof. Wen-mei Hwu of UIUC IME team and Dr. Peng Wang of NVIDIA

Communication Reduction

- Extend ghost cell region with two extra layers and compute rather communicate for the ghost cell region updates before stress computation.
- The 2D XY plane represents the 3D sub-domain, as no communication in Z direction is required due to 2D decomposition for GPUs.

(Zhou et al., 2013)

GPU-GPU Communication

	V	elocity	Stress		
Communication	Frequency	requency Message size		Message size	
Before Comm Reduction	4	6*(nx+ny)*NZ	4	12*(nx+ny)*N Z	
After Comm Reduction	4	12*(nx+ny+4)*N Z	No communication		

Computing and Communication Overlapping

Multi-streaming for Computing/Communication Overlap

Two-phase I/O Model

- Parallel I/O
 - Read and redistribute 6.9 TB inputs
 - Contiguous block read by reduced number of readers
 - High bandwidth asynchronous point-to-point communication redistribution
 - Aggregate and write
 - Temporal aggregation buffers
 - Contiguous writes
 - Throughput
 - Overlap of source inputs with GPU computation

(Poyraz et al., 2014)

AWP-ODC Weak Scaling

TITAN X

AWP-ODC Performance

Device	GHz	Mem bwth GB/s	GDDR5/4 (GB)	TFLOP/s (SP)	AWP MLUPS (SP)
M2090	1.3	177	6	1.33	361
К20Х	0.73	250	6	3.95	552
Titan-X	1.5	480	12	10.60	1143
KNL 7210	1.3	460	16	5.32	1110
ES-2680v3	2.5	120	128	0.48	131

* Nonlinear code

OLCF Summit in 2018

- Hybrid CPU/GPU system delivered in 2017
 - Multiple IBM POWER9 processors and multiple NVIDIA Volta GPUs
 - 3,400 nodes
 - Over 40 TF peak performance
 - more than 512 GB of combined
 DDR4 and high bandwidth memory
 - Non-blocking fat tree, dual rail EDR-IB (23 GB/s)
- NVLink
 - 160GB/s per GPU bidirectional to Peers
 - 5x-12x PCI-e Gen3 Bandwidth
 - Load/Store access to Peer Memory
- HBM (Stacked) Memory
 - 4x higher bandwidth, ~1 TB/s
 - 3x larger capacity
 - 4x more energy efficient per bit

Extreme-scale Earthquake computing

 $SC \neq C$

Year

Summary

SC//_EC

- Large ensembles of CyberShake runs stretch HPC resources across the board
- Major algorithmic advances needed to engage computing at extreme scale
 - Accuracy through advanced physics such as near-surface heterogeneities, frequency-dependent attenuation, fault roughness, plasticity, topography
 - Efficiency through scaling and advanced algorithms e.g. ADER-DG, SpecFEM3D
 - Bader talk on Tuesday, 12:25-13:00
 - Komatitsch talk on Wednesday, 11:30-12:05
- Exascale challenges on heterogeneous systems
 - Significant investment needed, MPI+X, in re-writing and re-designing algorithms to manage hierarchical parallelism at nodes, cores and threads level, with data locality, heterogeneity and reliability
 - Dealing with billion-way concurrency, strong + weak scaling, and decreased memory bandwidth
 - Inexactness computing for reduced energy consumption that can tolerate a degree of inaccuracy
 - Time-to-solution and energy consumption are the final measures

sC//*EC*

HPGeoC Supports Earthquake Simulations

Dr. Dmitry Pekurovsky

Dr. Yifeng Cui

Dr. Alexander Breuer

Supported by

XSEDE Extreme Science and Engineering Discovery Environment

Dr. Dawei Mu

Dr. Daniel Roten

Amit Chourasia

Josh Torbin

Hui Zhou, CEA, visiting

Marcus Noack, SRL, visiting

Thank You!