Simulation of Rayleigh-Benard Convection on GPUs

Massimiliano Fatica, Josh Romero, Everett Phillips, Gregory Ruetsch, Richard Stevens, John Donners, Rodolfo Ostilla-Monico, Roberto Verzicco

Perspectives of GPU Computing in Science, Rome September 26-28

OUTLINE

- Motivation
- AFID Code
- GPU Implementation
- Results (with Pascal !!!)
- Conclusions

Motivation

- Direct Numerical Simulation (DNS) is an invaluable tool for studying the details of fluid flows
- DNS must resolve all the flow scales, which requires:

-Computers with large memory (to store variables on large meshes)

-As much computational power as possible (to reduce runtime)

-Time step decreases as mesh is made finer

-Efficient use of parallel machines is essential

Motivation

- Current trend in HPC is to use GPUs to increase performance
- Main objectives of this work:
 - Port AFiD, a DNS code for RB simulations, to GPU clusters
 - Single source code for CPU and GPU versions
 - Modify source as little as possible
 - - Hybrid (CPU+GPU) version

AFiD CODE

http://www.afid.eu

High parallel application for Rayleigh-Benard and Taylor-Couette flows

Developed by Twente University, SURFSara and University of Rome "Tor Vergata"

Open source

Fortran 90 + MPI + OpenMP

HDF5 with parallel I/O

"A pencil distributed finite difference code for strongly turbulent wall-bounded flows", E. van der Poel, R. Ostilla-Monico, J. Donners, R. Verzicco, Computer & Fluids 116 (2015)

Navier-Stokes equations with Boussinesq approximation and additional equation for temperature

$$\nabla \cdot \mathbf{u} = \mathbf{0},$$

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \sqrt{\frac{Pr}{Ra}} \nabla^2 \mathbf{u} + \theta \mathbf{e}_x,$$

$$\frac{\partial \theta}{\partial t} + \mathbf{u} \cdot \nabla \theta = \sqrt{\frac{1}{PrRa}} \nabla^2 \theta,$$

Two horizontal periodic directions (y-z), vertical direction (x) is wall-bounded Mesh is equally spaced in the horizontal directions, stretched in the vertical direction

Numerical scheme

- Conservative centered finite difference
- Staggered grid
- Fractional step
- Time marching: low-storage RK3 or AB2

(Verzicco and Orlandi, JCP 1996)

(Orlandi, Fluid Flow Phenomena)

At each sub-step:

1) Intermediate non-solenoidal velocity field is calculated using non-linear, viscous, buoyancy and pressure at the current time sub-step

$$\frac{\mathbf{u}^* - \mathbf{u}^j}{\Delta t} = \left[\gamma_l H^j + \rho_l H^{j-1} - \alpha_l \mathcal{G} p^j + \alpha_l (\mathcal{A}_x^j + \mathcal{A}_y^j + \mathcal{A}_z^j) \frac{(\mathbf{u}^* + \mathbf{u}^j)}{2} \right]$$

2) Pressure correction is calculated solving the following Poisson equation

$$\nabla^2 \phi = \frac{1}{\alpha_l \Delta t} (\nabla \cdot \mathbf{u}^*)$$

3) The velocity and pressure are then updated using:

$$\mathbf{u}^{j+1} = \mathbf{u}^* - \alpha_l \Delta t(\mathcal{G}\phi)$$

$$p^{j+1} = p^j + \phi - rac{lpha_l \Delta t}{2Re} (\mathcal{L}\phi)$$

Parallel implementation

- For large Ra numbers (large temperature difference), the implicit integration of the viscous terms in the horizontal directions becomes unnecessary
- This simplifies the parallel implementation:
 - Only the Poisson solver requires global communication
- The code uses a pencil-type decomposition, more general than a slab-type one

• The pencil decomposition is based on the Decomp2D library (www.2decomp.org)

AFiD Code Poisson solver

- The solution of the Poisson equation is always the critical part in incompressible solvers
- Direct solver:
 - Fourier decomposition in the horizontal plane
 - Tridiagonal solver in the normal direction

$$\left(\frac{\partial^2}{\partial x^2} - \omega_{y,j}^2 - \omega_{z,k}^2\right) \mathcal{F}(\phi) = \mathcal{F}\left[\frac{1}{\alpha_l \Delta t} (\mathcal{D}\mathbf{u}^*)\right]$$

$$\omega_{y,j} = \begin{cases} \left(1 - \cos\left[\frac{2\pi(j-1)}{N_y}\right]\right) \Delta_y^{-2} & : \text{ for } j \leq \frac{1}{2}N_y + 1\\ \left(1 - \cos\left[\frac{2\pi(N_y - j + 1))}{N_y}\right]\right) \Delta_y^{-2} & : \text{ otherwise} \end{cases}$$

(modified wave numbers)

AFiD Code Poisson solver

- 1) FFT the r.h.s along y (b) (from real NX x NY x NZ to complex NX x (NY+1)/2 x NZ)
- 2) FFT the r.h.s. along z (c) (from complex NX x (NY+1)/2 x NZ to complex NX x (NY+1)/2 x NZ)
- 3) Solve tridiagonal system in x for each y and z wavenumber (a)
- 4) Inverse FFT the solution along z (c) (from complex NX x (NY+1)/2 x NZ to complex NX x (NY+1)/2 x NZ)
- 5) Inverse FFT the solution along y (b) (from complex NX x (NY+1)/2 x NZ to real NX x NY x NZ)

GPU IMPLEMENTATION

Porting Strategy

Since the code is in Fortran 90, natural choices are CUDA Fortran or OpenACC

Choice of CUDA Fortran motivated by:

- Personal preference
- Use of CUF kernels made effort comparable to OpenACC
- Explicit data movement is important to optimize CPU/GPU data transfers and network traffic
- Easier to work around compiler/library bugs
- Explicit kernels when/if needed

CUDA Fortran

- CUDA is a scalable model for parallel computing
- CUDA Fortran is the Fortran analog to CUDA C
 - Program has host and device code similar to CUDA C
 - Host code is based on the runtime API
 - Fortran language extensions to simplify data management
- CUDA Fortran implemented in the PGI compilers

Kernel Loop Directives (CUF Kernels)

Automatic kernel generation and invocation of host code region (arrays used in loops must reside on GPU)

```
program incTest
use cudafor
implicit none
integer, parameter :: n = 256
integer :: a(n), b
integer, device :: a_d(n)
a = 1; b = 3; a_d = a
!$cuf kernel do <<<*, *>>>
do i = 1, n
a_d(i) = a_d(i)+b
enddo
a = a_d
if (all(a == 4)) write(*,*) 'Test Passed'
end program incTest
```

Kernel Loop Directives (CUF Kernels)

• Multidimensional arrays

```
!$cuf kernel do(2) <<< *,* >>>
do j = 1, ny
    do i = 1, nx
        a_d(i,j) = b_d(i,j) + c_d(i,j)
        enddo
enddo
```

• Can specify parts of execution parameter

```
!$cuf kernel do(2) <<<(*,*),(32,4)>>>
```

• Compiler recognizes use of scalar reduction and generates one result

```
rsum = 0.0
!$cuf kernel do <<<*,*>>>
do i = 1, nx
  rsum = rsum + a_d(i)
enddo
```

Libraries

CPU CODE

1/0: HDF5

FFT: FFTW (guru plan)

Linear algebra: BLAS+LAPACK

Distributed memory: MPI, 2DDecomp with additional x-z and z-x transpose

Multicore: OpenMP

Build System

Original code:

- -Build system based on autoconfig
- -Double precision enabled with compiler flag

New code:

- Build system based on Makefile
- Single source code for CPU, GPU and hybrid versions
- Files with .F90 suffix
- Use of preprocessor to enable/guard GPU and hybrid code
- Explicit control of precision
- Single Makefile to generate both the CPU, GPU and hybrid binaries (very important to verify results)
- CPU binary can be generated with any compiler (PGI, Intel, Cray, Gnu)
- GPU and hybrid binaries requires PGI (v15.7 or 16.x)

Details

• F2003 sourced allocation:

allocate(array_b, source=array_a)

- Allocates *array_b* with the same bounds of *array_a*
- Initializes array_b with values of array_a
- If *array_b* is defined with the *device* attribute, allocation will be on the GPU and host-to-device data transfer occurs

• Variables renaming from modules:

#ifdef USE_CUDA
 use cudafor
 use local_arrays, only: vx => vx_d, vy => vy_d, vz => vz_d
#else
 use local_arrays, only: vx,vy,vz
#endif

Use attribute(device):

subroutine ExplicitTermsVX(qcap)
implicit none
real(fp_kind), dimension(1:nx,xstart(2):xend(2),xstart(3):xend(3)),intent(OUT) :: qcap
#ifdef USE_CUDA
attributes(device) :: vx,vy,vz,temp,qcap,udx3c
#endif

Use of generic interfaces:

Interface updateQuantity module procedure updateQuantity_cpu module procedure updateQuantity_gpu end interface updateQuantity

Code Example

use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m => udx3m_d use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, nxm, dy, dz_udx3m use param, only: fp_kind, n	subroutine CalcMaxCFL(cflm)	subroutine CalcMaxCFL(cflm)
clinited USEclinited USEclinited USEclinited USEISOMP PARALLEL DO & ISOMP DEFAULT(none) & ISOMP SHARED(zd, vulation)Start kemel do(3) <<<*,*>>> tendifISOMP SHARED(zd, vulation)& ISOMP PRAVATE(i, k, i,	use param, only: fp_kind, nxm, dy, dz, udx3m use local_arrays, only: vx,vy,vz use decomp_2d use mpih implicit none realintent(out) :: cflm integer :: jk,jp,kp,i,jp real :: qcf	<pre>#ifdef USE_CUDA use cudafor use param, only: fp_kind, nxm, dy => dy_d, dz => dz_d, udx3m => udx3m_d use local_arrays, only: vx => vx_d, vy => vy_d, vz => vz_d #else use param, only: fp_kind, nxm, dy, dz, udx3m use local_arrays, only: vx,vy,vz #endif use decomp_2d use mpih implicit none real(fp_kind),intent(out) :: cflm integer :: j.k.jp,kp,i,ip real(fp_kind) :: qcf cflm=real(0,00000001 fp_kind)</pre>
#Idef USE_CUDAISOMP PARALLEL DO &ISOMP DEFAULT(none) &ISOMP DEFAULT(none) &ISOMP PRIVATE(j,ki,p),kp,qcf) &ISOMP PRIVATE(j,ki,p),kp,qcf) &ISOMP PRIVATE(j,ki,p),p,kp,qcf) &ISOMP PRIVATE(j,ki,p),f,kp,qcf) &		
do i=xstart(3),xend(3) ip=i+1 do j=xstart(2),xend(2) jp=j+1 do k=1,nxm kp=k+1 qcf= (abs((vz(k,j.i)+vz(k,j.ip))*0.5d0*dz) & +abs((vy(k,j.i)+vz(k,j.ip))*0.5d0*dz) & +abs((vy(k,j.i)+vz(k,j.ip))*0.5d0*dz) & *abs((vz(k,j.i)+vz(k,j.ip))*0.5d0*dz) & 	ISOMP PARALLEL DO & ISOMP DEFAULT(none) & ISOMP SHARED(xstart,xend,nxm,vz,vy,vx) & ISOMP SHARED(dz,dy,udx3m) & ISOMP PRIVATE(i,i,k,ip,jp,kp,qcf) & ISOMP REDUCTION(max:cfim)	#idef USE_CUDA IScuf kemel do(3) <<<*,*>>> #endif I\$OMP PARALLEL DO & I\$OMP DEFAULT(none) & I\$OMP SHARED(xstart,xend,nxm,vz,vy,vx) & I\$OMP SHARED(dz,dy,udx3m) & I\$OMP PRIVATE(i,j,k,ip,je,kq,cf) & I\$OMP REDUCTION(max:cfim)
cfim = max(cfim,qcf) enddo enddo enddocfim = max(cfim,qcf) enddo enddo enddoI\$OMP END PARALLEL DOenddocall MpiAllMaxRealScalar(cfim)call MpiAllMaxRealScalar(cfim)return endreturn end	do i=xstart(3),xend(3) ip=i+1 do j=xstart(2),xend(2) jp=j+1 do k=1,nxm kp=k+1 qcf=(abs((vz(k,j,i)+vz(k,j,ip))*0.5d0*dz) & +abs((vx(k,j,i)+vy(k,jp,i))*0.5d0*dy) & +abs((vx(k,j,i)+vx(kp,j,i))*0.5d0*dx3m(k)))	do i=xstart(3),xend(3) ip=i+1 do j=xstart(2),xend(2) jp=j+1 do k=1,nxm kp=k+1 qcf=(abs((vz(k,j,i)+vz(k,j,ip))*real(0.5,fp_kind)*dz) & +abs((vv(k,j,i)+vy(k,p,j,i))*real(0.5,fp_kind)*dy) & +abs((vx(k,j,i)+vx(k,p,j,i))*real(0.5,fp_kind)*udx3m(k)))
ISOMP END PARALLEL DO ISOMP END PARALLEL DO call MpiAllMaxRealScalar(cflm) call MpiAllMaxRealScalar(cflm) return end return end	cfim = max(cfim,qcf) enddo enddo enddo	cfim = max(cfim,qcf) enddo enddo enddo
call MpiAllMaxRealScalar(cflm) call MpiAllMaxRealScalar(cflm) return return end end	SOMP END PARALLEL DO	SOMP END PARALLEL DO
return end return end	call MpiAllMaxRealScalar(cflm)	call MpiAllMaxRealScalar(cflm)
ena	return	return
	enu	enu

Transpose

Original scheme

Improved scheme

HYBRID VERSION

New hybrid version:

- Explicit and implicit terms are computed on both CPU and GPU
 Poisson solver is still done on GPU
- CPU/GPU ratio as input parameter

Increase the available memory

У ►Z

Trade-off between increasing processing speed and memory resources

Profiling

Profiling is very important to understand bottlenecks and to spot opportunities for better interaction between the CPU and the GPU

For GPU codes, profiling information can be generated with Nvprof and visualized with Nvvp

For CPU+GPU codes, it is possible to annotate the profiling timelines using the NVIDIA Tools Extension (NVTX) library

NVTX from Fortran and CUDA Fortran:

https://devblogs.nvidia.com/parallelforall/customize-cuda-fortran-profiling-nvtx/

NVTX Example

			NVIDIA Visual Prot	iler		
📸 🖫 🖳 🖬 🖏 🔹 🔶 🗸	🔍 F 📉 📕 📮 .	P				
💺 *nvprof.output 🔀						- 8
	0 s	2.5 s	5 s	7.5 s	10 s	12.5 s
Process "a.out" (61624)						
Thread 2077410064				First label		
Markers and Ranges	Label 1 Labe	el 2 Label 3 Label	4 Label 5 Label 6 La	bel 7 Label 8 Label	9 Label 10 Label 11 L	abel 12 Label 13 Label 14
program main use nvtx character(len=4) :: itcount \$ pgf90 nv ! First range with standard color call nvtxStartRange("First label") \$ nvprof - NVPROF is do n=1,14 ! Create custom label for each marker write(itcount,'(i4)') n Generated ! Range with custom color Image: Color				f -L/usr/local/ filer.output ./ Filing process 1 alt file: /Users	cuda/lib -lnvToo a.out .0653, command: . s/mfatica/profile	lsExt /a.out er.output
! Add sleep to m call sleep(1)	ake markers b	vig				
call nvtxEndRan end do	ge					
call nvtxEndRange end program main	2					

NVVP Example

Profiler output for the hybrid version

Optimal Configuration

If the 2D processor configuration is not specified as an argument, the code will try to estimate the optimal configuration

GPU code measures the transpose and halo update time

In auto-tuning mode factors: 1 2 3 6 9 18 processor grid 1 by 18 time= 0.3238644202550252 processor grid 2 by 9 time= 0.8386047548717923 processor grid 3 by 6 time= 0.9210867749320136 processor grid 6 by 3 time= 0.9363843864864774 processor grid 9 by 2 time= 0.8577810128529867 processor grid 18 by 1 time= 0.5901912318335639 the best processor grid is probably 1 by 18 MPI tasks= 18
******** CUDA version ******
grid resolution: nx= 1025 nz= 1025 nz= 1025
GPU memory used: 10625.0 - 10832.0 / 11519.6 MBytes GPU memory free: 894.5 - 686.6 / 11519.6 Mbytes
Creating initial condition
Initial maximum divergence: 0.2818953478714559
Initialization Time = 15.63 sec.
WallDt CFL ntime time vmax(1) vmax(2) vmax(3) dmax tempm tempmax tempmin nuslw nussup
0.000 0.000 0 0.000 0.00000E+00 0.00000E+00 0.00000E+00 2.81895E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
2.675 0.018 2 0.010 0.00000E+00 1.66194E-03 8.31368E-04 2.04477E-15 4.99492E-01 1.00000E+00 1.30278E-04 1.00000E+00 1.00000E+00
2.747 0.018 3 0.020 0.00000E+00 1.66190E+02 8.31480E-04 2.71691E-16 4.99492E-01 1.00000E+00 1.30276E-04 1.00000E+00 1.00000E+00 2.736 0.018 0.01
2.720 0.018 4 0.030 0.00000E+00 1.00190E+03 0.31035E-04 2.00232E-10 4.99492E-01 1.00000E+00 1.30274E-04 1.00000E+00 1.00000E+00 2.725 0.018 5 0.040 0.00000E+00 1.66193E-03 8.31893E-04 2.84318E-16 4.99492E-01 1.00000E+00 1.30271E-04 1.00000E+00 1.00000E+00

Memory Footprint

Memory footprint reduction one of the main goals to increase the mesh size

1024 ³						
Computer	Time per step	GPU	#GPUs	# nodes	Mem. Used (MB)	Mem. per GPU (MB)
Piz-Daint	1.65s	K20X	36	36	5427-5635	5795
Cartesius	2.7s	K40	18	9	10625-10832	11519
2015 version						
Piz-Daint	1.7s	K20X	32	32	5389-5427	5795
Cartesius	3.18s	K40	16	8	10545-10592	11519
	1.68s	K40	32	16	5415-5463	11519
2016 version						
Piz-Daint	2.1s	K20X	25	25	5386-5538	5795

2048³ will fit on Cartesius (SARA) using all the available GPU nodes (64) 4096³ will fit on Piz-Daint (CSCS) using 2048 (out of 5272) Now 1600 nodes !!!

Performance

Results on K20x with 5795MB of memory (PizDaint) and P100 with 16GB

1024x1024x1024						
Time per step	GPU	#GPUs	Conf	Mem. Used (MB)		
2.4s	P100	9	1x9	15009-15121		
1.7s	K20x	32	1x32	5380-5427		
0.34s	K20X	256	16x16	821-824		
0.24s	K20X	512	32x16	460-470		
0.17s	K20X	1024	32x32	322-323		

2048x3076x3076						
Time per step	GPU	#GPUs	Conf	Mem. Used (MB)		
2.4s	K20X	640	64x10	5047-5159		
1.58s	K20X	1024	64x16	3381-3385		
0.88s	K20X	2048	32x64	1828-1837		
0.57s	K20X	4096	64x64	1051-1056		

Performance

Strong Scaling of AFiD on 2048³ grid

Comparison CPU/GPU Code

Effect of Rayleigh number

Ra=10⁸

Ra=10⁹

Ra=10¹⁰

CONCLUSIONS

Conclusions and Future Work

- Excellent speed up and scalability
- Results have been verified to be correct
- The code will be released on Github
- The code will be used to push the boundary of RB simulations
- Add the multiscale algorithm (finer mesh for temperature equation) to further reduce the memory footprint
- Pascal GPU with larger memory and improved memory bandwidth are very beneficial for this code