
Massimiliano Fatica, Josh Romero, Everett Phillips, Gregory Ruetsch,  

Richard Stevens, John Donners, Rodolfo Ostilla-Monico, Roberto Verzicco 

Simulation of Rayleigh-Benard 
Convection on GPUs 

Perspectives of GPU Computing in Science, Rome September 26-28  



2  

OUTLINE 

•  Motivation 

•  AFID Code 

•  GPU Implementation 

•  Results (with Pascal !!!)  

•  Conclusions 



3  

Motivation 

•  Direct Numerical Simulation (DNS) is an invaluable tool for studying the details of 
fluid flows 

•  DNS must resolve all the flow scales, which requires: 

 -Computers with large memory  (to store variables on large meshes) 

 -As much computational power as possible (to reduce runtime) 

  -Time step decreases as mesh is made finer 

 -Efficient use of parallel machines is essential 



4  

Motivation 

•  Current trend in HPC is to use GPUs to increase performance 

•  Main objectives of this work: 

 - Port  AFiD, a DNS code for RB simulations, to GPU clusters 

 - Single source code for CPU and GPU versions 

 - Modify source as little as possible 

•  - Hybrid (CPU+GPU) version  

  

 

 



5  

AFiD CODE 



6  

AFiD Code 

High parallel application for Rayleigh-Benard and Taylor-Couette flows 

Developed by Twente University, SURFSara and University of Rome “Tor Vergata” 

Open source 

Fortran 90 + MPI + OpenMP 

HDF5 with parallel I/O 

“A pencil distributed finite difference code for strongly turbulent wall-bounded 
flows”, E. van der Poel, R. Ostilla-Monico, J. Donners, R. Verzicco, Computer & 
Fluids 116 (2015) 

http://www.afid.eu 



7  

AFiD Code 

In this manuscript, we will detail the parallelization of a sec-
ond-order FDS based on Verzicco and Orlandi [12] to two wall
bounded systems, Rayleigh–Bénard (RB) convection, the flow in a
fluid layer between two parallel plates; one heated from below
and cooled from above and Taylor–Couette (TC) flow, the flow
between two coaxial independently rotating cylinders, although
our code can easily extended to any flow that is wall-bounded in
one dimension. This FDS scheme has already been used in pure
Navier–Stokes simulations [12], with immersed boundary methods
[13], for Rayleigh–Bénard convection [14–20] and for Taylor–
Couette flow [21,22]. The numerical results have been validated
against experimental data numerous times. We will exploit several
advantages of the large Re regime and the boundary conditions to
heavily reduce communication cost; opening the possibility to
achieve much higher driving.

The manuscript is organized as follows: Section 2 describes TC
and RB in more detail. Section 3 details the numerical scheme used
to advance the equations in time. Section 4 shows that in thermal
convection, the Courant–Friedrichs–Lewy (CFL) [23] stability con-
straints on the timestep due to the viscous terms become less strict
than those due to the non-linear terms at high Rayleigh (Reynolds)
numbers. Section 5 details a pencil decomposition to take advan-
tage of the new time integration scheme and the choice of data
arrangement in the pencil decomposition. Finally, Section 6 com-
pares the computational cost of the existing and the new approach
and presents an outlook of what further work can be done to com-
bine this approach with other techniques.

2. Rayleigh–Bénard convection and Taylor–Couette flow

RB and TC are paradigmatic models for convective and shear
flows, respectively. They are very popular systems because they
are mathematically well defined, experimentally accessible and
reproduce many of the interesting phenomena observed in appli-
cations. A volume rendering of the systems can be seen in Fig. 1.
The Reynolds numbers in the common astro- and geo-physical
applications are much higher than what can be reached currently
in a laboratory. Therefore it is necessary to extrapolate available
experimental results to the large driving present in stars and galax-
ies. This extrapolation becomes meaningless when transitions in
scaling behaviour are present, and it is expected that once the
Rayleigh number, i.e. the non-dimensional temperature difference,
becomes large enough, the boundary layers transition to

turbulence. This transition would most likely affect the scaling of
interesting quantities. However, experiments disagree on exactly
where this transition takes place [24,25]. DNS can be used to
understand the discrepancies amongst experiments. However, to
reach the high Rayleigh numbers (Ra) of experiments new strate-
gies are required. DNS must resolve all scales in the flow, and the
scale separation between the smallest scale and the largest scale
grows with Reynolds number. This means larger grids are needed,
and the amount of computational work W scales approximately as
W ! Re4 [26].

Simulations of RB commonly imitate the cylindrical geometry
most used in experiments. Recently, a DNS with aspect ratio
C ¼ D=L ¼ 1=3, where D is the diameter of the plates and L the
height of the cell reached Ra ¼ 1012 using 1.6 Billion points with
a total cost of 2 Million CPU hours [27]. DNS in other geometries
have been proposed, such as homogeneous RB, where the flow is
fully periodic and a background temperature gradient is imposed.
This geometry is easy to simulate [28], but presents exponentially
growing solutions and does not have a boundary layer, thus not
showing any transition [29]. Axially homogeneous RB, where the
two plates of the cylinder are removed, and the sidewalls kept
and a background temperature gradient is imposed to drive the
flow has also been simulated [30]. This system does not have
boundary layers on the plates and does not show the transition.
Therefore, it seems necessary to keep both horizontal plates, hav-
ing at least one wall-bounded direction. The simplest geometry is
a parallelepiped box, periodic in both wall-parallel directions,
which we will call ‘‘rectangular’’ RB for simplicity. Rectangular
RB is receiving more attention recently [31–34], due to possibility
to reach higher Ra as compared to more complex geometries. It is
additionally the geometry that is closest to natural applications,
where there are commonly no sidewalls.

For TC, we have one naturally periodic dimension, the azi-
muthal extent. The axial extent can be chosen to be either bounded
by end-plates, like in experiments, or to be periodic. Axial end-
plates have been shown to cause undesired transitions to turbu-
lence if TC is in the linearly stable regime [35], or to not consider-
ably affect the flow if TC is in the unstable regime [36]. Large Re
DNS of TC focus on axially periodic TC, bounding the flow only in
the radial direction [37,22]. Therefore, the choice of having a single
wall-bounded direction for DNS of both TC and RB seems justified.

3. Numerical scheme

The code solves the Navier–Stokes equations with an additional
equation for temperature in three-dimensional coordinates, either
Cartesian or cylindrical. For brevity, we will focus on the RB
Cartesian problem, although all concepts can be directly translated
to TC in cylindrical coordinates system by substituting the vertical
direction for the radial direction, and the two horizontal directions
by the axial and azimuthal directions.

The non-dimensional Navier–Stokes equations with the
Boussinesq approximation for RB read:

r # u ¼ 0; ð1Þ

@u
@t
þ u #ru ¼ 'rpþ

ffiffiffiffiffiffi
Pr
Ra

r
r2uþ hex; ð2Þ

@h
@t
þ u #rh ¼

ffiffiffiffiffiffiffiffiffiffi
1

PrRa

r
r2h; ð3Þ

where u is the non-dimensional velocity, p the non-dimensional
pressure, h the non-dimensional temperature and t the non-dimen-
sional time. For non-dimensionalization, the temperature scale is
the temperature difference between both plates D, the length scale

Fig. 1. Left: RB flow for Ra ¼ 108; Pr ¼ 1 and C ¼ 2 in Cartesian coordinates. The
horizontal directions are periodic and the plates are subjected to a no-slip and
isothermal boundary condition. Red/yellow indicates hot fluid, while (light) blue
indicates cold fluid. The small heat carrying structures known as thermal plumes as
well as a large scale circulation can be seen in the visualization, highlighting the
scale separation in the flow. Right: TC flow with an inner cylinder Reynolds number
Re ¼ 105, a stationary outer cylinder, and a radius ratio g ¼ ri=ro ¼ 0:714. Green
fluid has a high angular velocity while blue fluid has a low angular velocity. The
smallness of the structures responsible for torque transport, and thus the need for
fine meshes, can be appreciated clearly. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

E.P. van der Poel et al. / Computers & Fluids 116 (2015) 10–16 11

Navier-Stokes equations with Boussinesq approximation and additional 
equation for temperature 

Two horizontal periodic directions (y-z), vertical direction (x) is wall-bounded 
Mesh is equally spaced in the horizontal directions, stretched in the vertical direction 



8  

AFiD Code 

•  Conservative centered finite difference 

•  Staggered grid  

•  Fractional step 

•  Time marching: low-storage RK3 or AB2 

 (Verzicco and Orlandi, JCP 1996) 

 (Orlandi, Fluid Flow Phenomena) 

Numerical scheme 

is the height of the cell L and the velocity scale is the free-fall veloc-
ity Uf ¼

ffiffiffiffiffiffiffiffiffiffiffi
gbDL

p
, where g is gravity and b is the isobaric expansion

coefficient of the fluid. Pr ¼ m=j is the fluid Prandtl number, where
m is the kinematic viscosity and j is the thermal conductivity. The
Rayleigh number is defined in this case as Ra ¼ gbDL3=mj. Finally,
ex is the unitary vector in parallel direction to gravity, which is also
the plate-normal direction.

As mentioned previously, the two horizontal directions are peri-
odic and the vertical direction is wall-bounded. The spatial dis-
cretization used is a conservative second-order centered finite
difference with velocities on a staggered grid. The pressure is cal-
culated at the center of the cell while the temperature field is
located on the ux grid. This is to avoid the interpolation error when
calculating the term hex in Eq. (2). The scheme is energy conserving
in the limit Dt ! 0. A two-dimensional (for clarity) schematic of
the discretization is shown in Fig. 2. For the case of thermal con-
vection an additional advantage of using FDS is present: the
absence of pressure in the advection/diffusion equation for scalars
can cause very sharp gradients in the temperature (scalar) field
[38] and low-order schemes fare better in this situation.

Time marching is performed with a fractional-step third-order
Runge–Kutta (RK3) scheme, in combination with a Crank–
Nicholson scheme [9] for the implicit terms. A second-order
Adams–Bashforth (AB2) method is additionally implemented.
However, in all production runs the RK3 method takes precedence
over AB2 even though the total RK3 time step includes three sub-
steps as compared to one for AB2. The theoretical stability limit of
AB2 and RK3 are CFL numbers lower than 1 and

ffiffiffi
3
p

, respectively. In
practice, the maximum CFL numbers of AB2 and RK3 are approxi-
mately 0.3 and 1.3, respectively. Because of three times higher
amount of substeps in RK3, the computational cost is proportion-
ally higher compared to AB2. Nevertheless, RK3 is more efficient
as the progression in physical time per computational cost is bet-
ter. In addition, even though the Crank–Nicholson integration with
Oð½Dt$2Þ error is the weakest link, the Oð½Dt$3Þ error of RK3
decreases the total error significantly compared to the Oð½Dt$2Þ
error of AB2. In addition, RK3 is self-starting at each time step
without decreasing the accuracy and without needing additional
information in the restart file. AB2 would require two continuation
files per quantity.

The pressure gradient is introduced through the ‘‘delta’’ form of
the pressure [39]: an intermediate, non-solenoidal velocity field u&

is calculated using the non-linear, the viscous and the buoyancy
terms in the Navier–Stokes equation, as well as the pressure at
the current time sub-step:

u& ' u j

Dt
¼ clH

j þ qlH
j'1 ' alGp j þ alðA j

x þA
j
y þA

j
zÞ
ðu& þ u jÞ

2

" #
;

ð4Þ

where the superscript j denotes the substep, Ai is the discrete dif-
ferential relationship for the viscous terms in the ith-direction, G
the discrete gradient operator and H j all explicit terms. The coeffi-
cients cl; ql and al depend on the time marching method used.
The pressure required to enforce the continuity equation at every
cell is then calculated by solving a Poisson equation for the pressure
correction /:

r2/ ¼ 1
alDt

ðr ) u&Þ; ð5Þ

or in discrete form:

L/ ¼ 1
alDt

ðDu&Þ; ð6Þ

where D the discrete divergence operator, and L is the discrete
Laplacian operator, L ¼ DG. The velocity and pressure fields are
then updated using:

ujþ1 ¼ u& ' alDtðG/Þ; ð7Þ

and

pjþ1 ¼ p j þ /' alDt
2Re
ðL/Þ; ð8Þ

making ujþ1 divergence free.
The original numerical scheme treats all viscous terms implic-

itly. This would result in the solution of a large sparse matrix,
but this is avoided by an approximate factorization of the sparse
matrix into three tridiagonal matrices; one for each direction
[12]. The tridiagonal matrices are then solved using Thomas’ algo-
rithm, (with a Sherman–Morrison perturbation if the dimension is
periodic), in OðNÞ time. The calculation is thus simplified at the
expense of introducing an error OðDt3Þ. This method was originally
developed and used for small Reynolds number problems, and
without having in mind that data communication between differ-
ent processes could be a bottleneck. The first parallelization
scheme with MPI was a 1D-domain ‘‘slab’’ decomposition, visual-
ized in the left panel of Fig. 3. The main bottlenecks were found
in the all-to-all communications present in the pressure-correction
step and the tridiagonal solver in the direction in which the
domain is decomposed (cf. Table 1 for more details). Slab decom-
positions are easy to implement, but are limited in two ways:
First, the number of MPI processes cannot be larger than N, the
amount of grid points in one dimension. A hybrid MPI-OpenMP
decomposition can take this limit further, but scaling usually does
not go further than 104 cores. Second, the size of the ‘‘halo’’ (or
ghost) cells becomes very significant with increasing number of
cores. Halo cells are cells which overlap the neighbour’s domain,

puy uy

ux,T

ux,T

x

y

z

Fig. 2. Location of pressure, temperature and velocities of a 2D simulation cell. The
third dimension (z) is omitted for clarity. As on an ordinary staggered scheme, the
velocity vectors are placed on the borders of the cell and pressure is placed in the
cell center. The temperature is placed on the same nodes as the vertical velocity, to
ensure exact energy conservation.

Fig. 3. Left panel: Slab-type domain decomposition using four MPI processes. Right
panel: Pencil-type domain decomposition using twelve MPI processes.

12 E.P. van der Poel et al. / Computers & Fluids 116 (2015) 10–16



9  

Numerical scheme 

is the height of the cell L and the velocity scale is the free-fall veloc-
ity Uf ¼

ffiffiffiffiffiffiffiffiffiffiffi
gbDL

p
, where g is gravity and b is the isobaric expansion

coefficient of the fluid. Pr ¼ m=j is the fluid Prandtl number, where
m is the kinematic viscosity and j is the thermal conductivity. The
Rayleigh number is defined in this case as Ra ¼ gbDL3=mj. Finally,
ex is the unitary vector in parallel direction to gravity, which is also
the plate-normal direction.

As mentioned previously, the two horizontal directions are peri-
odic and the vertical direction is wall-bounded. The spatial dis-
cretization used is a conservative second-order centered finite
difference with velocities on a staggered grid. The pressure is cal-
culated at the center of the cell while the temperature field is
located on the ux grid. This is to avoid the interpolation error when
calculating the term hex in Eq. (2). The scheme is energy conserving
in the limit Dt ! 0. A two-dimensional (for clarity) schematic of
the discretization is shown in Fig. 2. For the case of thermal con-
vection an additional advantage of using FDS is present: the
absence of pressure in the advection/diffusion equation for scalars
can cause very sharp gradients in the temperature (scalar) field
[38] and low-order schemes fare better in this situation.

Time marching is performed with a fractional-step third-order
Runge–Kutta (RK3) scheme, in combination with a Crank–
Nicholson scheme [9] for the implicit terms. A second-order
Adams–Bashforth (AB2) method is additionally implemented.
However, in all production runs the RK3 method takes precedence
over AB2 even though the total RK3 time step includes three sub-
steps as compared to one for AB2. The theoretical stability limit of
AB2 and RK3 are CFL numbers lower than 1 and

ffiffiffi
3
p

, respectively. In
practice, the maximum CFL numbers of AB2 and RK3 are approxi-
mately 0.3 and 1.3, respectively. Because of three times higher
amount of substeps in RK3, the computational cost is proportion-
ally higher compared to AB2. Nevertheless, RK3 is more efficient
as the progression in physical time per computational cost is bet-
ter. In addition, even though the Crank–Nicholson integration with
Oð½Dt$2Þ error is the weakest link, the Oð½Dt$3Þ error of RK3
decreases the total error significantly compared to the Oð½Dt$2Þ
error of AB2. In addition, RK3 is self-starting at each time step
without decreasing the accuracy and without needing additional
information in the restart file. AB2 would require two continuation
files per quantity.

The pressure gradient is introduced through the ‘‘delta’’ form of
the pressure [39]: an intermediate, non-solenoidal velocity field u&

is calculated using the non-linear, the viscous and the buoyancy
terms in the Navier–Stokes equation, as well as the pressure at
the current time sub-step:

u& ' u j

Dt
¼ clH

j þ qlH
j'1 ' alGp j þ alðA j

x þA
j
y þA

j
zÞ
ðu& þ u jÞ

2

" #
;

ð4Þ

where the superscript j denotes the substep, Ai is the discrete dif-
ferential relationship for the viscous terms in the ith-direction, G
the discrete gradient operator and H j all explicit terms. The coeffi-
cients cl; ql and al depend on the time marching method used.
The pressure required to enforce the continuity equation at every
cell is then calculated by solving a Poisson equation for the pressure
correction /:

r2/ ¼ 1
alDt

ðr ) u&Þ; ð5Þ

or in discrete form:

L/ ¼ 1
alDt

ðDu&Þ; ð6Þ

where D the discrete divergence operator, and L is the discrete
Laplacian operator, L ¼ DG. The velocity and pressure fields are
then updated using:

ujþ1 ¼ u& ' alDtðG/Þ; ð7Þ

and

pjþ1 ¼ p j þ /' alDt
2Re
ðL/Þ; ð8Þ

making ujþ1 divergence free.
The original numerical scheme treats all viscous terms implic-

itly. This would result in the solution of a large sparse matrix,
but this is avoided by an approximate factorization of the sparse
matrix into three tridiagonal matrices; one for each direction
[12]. The tridiagonal matrices are then solved using Thomas’ algo-
rithm, (with a Sherman–Morrison perturbation if the dimension is
periodic), in OðNÞ time. The calculation is thus simplified at the
expense of introducing an error OðDt3Þ. This method was originally
developed and used for small Reynolds number problems, and
without having in mind that data communication between differ-
ent processes could be a bottleneck. The first parallelization
scheme with MPI was a 1D-domain ‘‘slab’’ decomposition, visual-
ized in the left panel of Fig. 3. The main bottlenecks were found
in the all-to-all communications present in the pressure-correction
step and the tridiagonal solver in the direction in which the
domain is decomposed (cf. Table 1 for more details). Slab decom-
positions are easy to implement, but are limited in two ways:
First, the number of MPI processes cannot be larger than N, the
amount of grid points in one dimension. A hybrid MPI-OpenMP
decomposition can take this limit further, but scaling usually does
not go further than 104 cores. Second, the size of the ‘‘halo’’ (or
ghost) cells becomes very significant with increasing number of
cores. Halo cells are cells which overlap the neighbour’s domain,

puy uy

ux,T

ux,T

x

y

z

Fig. 2. Location of pressure, temperature and velocities of a 2D simulation cell. The
third dimension (z) is omitted for clarity. As on an ordinary staggered scheme, the
velocity vectors are placed on the borders of the cell and pressure is placed in the
cell center. The temperature is placed on the same nodes as the vertical velocity, to
ensure exact energy conservation.

Fig. 3. Left panel: Slab-type domain decomposition using four MPI processes. Right
panel: Pencil-type domain decomposition using twelve MPI processes.

12 E.P. van der Poel et al. / Computers & Fluids 116 (2015) 10–16

is the height of the cell L and the velocity scale is the free-fall veloc-
ity Uf ¼

ffiffiffiffiffiffiffiffiffiffiffi
gbDL

p
, where g is gravity and b is the isobaric expansion

coefficient of the fluid. Pr ¼ m=j is the fluid Prandtl number, where
m is the kinematic viscosity and j is the thermal conductivity. The
Rayleigh number is defined in this case as Ra ¼ gbDL3=mj. Finally,
ex is the unitary vector in parallel direction to gravity, which is also
the plate-normal direction.

As mentioned previously, the two horizontal directions are peri-
odic and the vertical direction is wall-bounded. The spatial dis-
cretization used is a conservative second-order centered finite
difference with velocities on a staggered grid. The pressure is cal-
culated at the center of the cell while the temperature field is
located on the ux grid. This is to avoid the interpolation error when
calculating the term hex in Eq. (2). The scheme is energy conserving
in the limit Dt ! 0. A two-dimensional (for clarity) schematic of
the discretization is shown in Fig. 2. For the case of thermal con-
vection an additional advantage of using FDS is present: the
absence of pressure in the advection/diffusion equation for scalars
can cause very sharp gradients in the temperature (scalar) field
[38] and low-order schemes fare better in this situation.

Time marching is performed with a fractional-step third-order
Runge–Kutta (RK3) scheme, in combination with a Crank–
Nicholson scheme [9] for the implicit terms. A second-order
Adams–Bashforth (AB2) method is additionally implemented.
However, in all production runs the RK3 method takes precedence
over AB2 even though the total RK3 time step includes three sub-
steps as compared to one for AB2. The theoretical stability limit of
AB2 and RK3 are CFL numbers lower than 1 and

ffiffiffi
3
p

, respectively. In
practice, the maximum CFL numbers of AB2 and RK3 are approxi-
mately 0.3 and 1.3, respectively. Because of three times higher
amount of substeps in RK3, the computational cost is proportion-
ally higher compared to AB2. Nevertheless, RK3 is more efficient
as the progression in physical time per computational cost is bet-
ter. In addition, even though the Crank–Nicholson integration with
Oð½Dt$2Þ error is the weakest link, the Oð½Dt$3Þ error of RK3
decreases the total error significantly compared to the Oð½Dt$2Þ
error of AB2. In addition, RK3 is self-starting at each time step
without decreasing the accuracy and without needing additional
information in the restart file. AB2 would require two continuation
files per quantity.

The pressure gradient is introduced through the ‘‘delta’’ form of
the pressure [39]: an intermediate, non-solenoidal velocity field u&

is calculated using the non-linear, the viscous and the buoyancy
terms in the Navier–Stokes equation, as well as the pressure at
the current time sub-step:

u& ' u j

Dt
¼ clH

j þ qlH
j'1 ' alGp j þ alðA j

x þA
j
y þA

j
zÞ
ðu& þ u jÞ

2

" #
;

ð4Þ

where the superscript j denotes the substep, Ai is the discrete dif-
ferential relationship for the viscous terms in the ith-direction, G
the discrete gradient operator and H j all explicit terms. The coeffi-
cients cl; ql and al depend on the time marching method used.
The pressure required to enforce the continuity equation at every
cell is then calculated by solving a Poisson equation for the pressure
correction /:

r2/ ¼ 1
alDt

ðr ) u&Þ; ð5Þ

or in discrete form:

L/ ¼ 1
alDt

ðDu&Þ; ð6Þ

where D the discrete divergence operator, and L is the discrete
Laplacian operator, L ¼ DG. The velocity and pressure fields are
then updated using:

ujþ1 ¼ u& ' alDtðG/Þ; ð7Þ

and

pjþ1 ¼ p j þ /' alDt
2Re
ðL/Þ; ð8Þ

making ujþ1 divergence free.
The original numerical scheme treats all viscous terms implic-

itly. This would result in the solution of a large sparse matrix,
but this is avoided by an approximate factorization of the sparse
matrix into three tridiagonal matrices; one for each direction
[12]. The tridiagonal matrices are then solved using Thomas’ algo-
rithm, (with a Sherman–Morrison perturbation if the dimension is
periodic), in OðNÞ time. The calculation is thus simplified at the
expense of introducing an error OðDt3Þ. This method was originally
developed and used for small Reynolds number problems, and
without having in mind that data communication between differ-
ent processes could be a bottleneck. The first parallelization
scheme with MPI was a 1D-domain ‘‘slab’’ decomposition, visual-
ized in the left panel of Fig. 3. The main bottlenecks were found
in the all-to-all communications present in the pressure-correction
step and the tridiagonal solver in the direction in which the
domain is decomposed (cf. Table 1 for more details). Slab decom-
positions are easy to implement, but are limited in two ways:
First, the number of MPI processes cannot be larger than N, the
amount of grid points in one dimension. A hybrid MPI-OpenMP
decomposition can take this limit further, but scaling usually does
not go further than 104 cores. Second, the size of the ‘‘halo’’ (or
ghost) cells becomes very significant with increasing number of
cores. Halo cells are cells which overlap the neighbour’s domain,

puy uy

ux,T

ux,T

x

y

z

Fig. 2. Location of pressure, temperature and velocities of a 2D simulation cell. The
third dimension (z) is omitted for clarity. As on an ordinary staggered scheme, the
velocity vectors are placed on the borders of the cell and pressure is placed in the
cell center. The temperature is placed on the same nodes as the vertical velocity, to
ensure exact energy conservation.

Fig. 3. Left panel: Slab-type domain decomposition using four MPI processes. Right
panel: Pencil-type domain decomposition using twelve MPI processes.

12 E.P. van der Poel et al. / Computers & Fluids 116 (2015) 10–16

is the height of the cell L and the velocity scale is the free-fall veloc-
ity Uf ¼

ffiffiffiffiffiffiffiffiffiffiffi
gbDL

p
, where g is gravity and b is the isobaric expansion

coefficient of the fluid. Pr ¼ m=j is the fluid Prandtl number, where
m is the kinematic viscosity and j is the thermal conductivity. The
Rayleigh number is defined in this case as Ra ¼ gbDL3=mj. Finally,
ex is the unitary vector in parallel direction to gravity, which is also
the plate-normal direction.

As mentioned previously, the two horizontal directions are peri-
odic and the vertical direction is wall-bounded. The spatial dis-
cretization used is a conservative second-order centered finite
difference with velocities on a staggered grid. The pressure is cal-
culated at the center of the cell while the temperature field is
located on the ux grid. This is to avoid the interpolation error when
calculating the term hex in Eq. (2). The scheme is energy conserving
in the limit Dt ! 0. A two-dimensional (for clarity) schematic of
the discretization is shown in Fig. 2. For the case of thermal con-
vection an additional advantage of using FDS is present: the
absence of pressure in the advection/diffusion equation for scalars
can cause very sharp gradients in the temperature (scalar) field
[38] and low-order schemes fare better in this situation.

Time marching is performed with a fractional-step third-order
Runge–Kutta (RK3) scheme, in combination with a Crank–
Nicholson scheme [9] for the implicit terms. A second-order
Adams–Bashforth (AB2) method is additionally implemented.
However, in all production runs the RK3 method takes precedence
over AB2 even though the total RK3 time step includes three sub-
steps as compared to one for AB2. The theoretical stability limit of
AB2 and RK3 are CFL numbers lower than 1 and

ffiffiffi
3
p

, respectively. In
practice, the maximum CFL numbers of AB2 and RK3 are approxi-
mately 0.3 and 1.3, respectively. Because of three times higher
amount of substeps in RK3, the computational cost is proportion-
ally higher compared to AB2. Nevertheless, RK3 is more efficient
as the progression in physical time per computational cost is bet-
ter. In addition, even though the Crank–Nicholson integration with
Oð½Dt$2Þ error is the weakest link, the Oð½Dt$3Þ error of RK3
decreases the total error significantly compared to the Oð½Dt$2Þ
error of AB2. In addition, RK3 is self-starting at each time step
without decreasing the accuracy and without needing additional
information in the restart file. AB2 would require two continuation
files per quantity.

The pressure gradient is introduced through the ‘‘delta’’ form of
the pressure [39]: an intermediate, non-solenoidal velocity field u&

is calculated using the non-linear, the viscous and the buoyancy
terms in the Navier–Stokes equation, as well as the pressure at
the current time sub-step:

u& ' u j

Dt
¼ clH

j þ qlH
j'1 ' alGp j þ alðA j

x þA
j
y þA

j
zÞ
ðu& þ u jÞ

2

" #
;

ð4Þ

where the superscript j denotes the substep, Ai is the discrete dif-
ferential relationship for the viscous terms in the ith-direction, G
the discrete gradient operator and H j all explicit terms. The coeffi-
cients cl; ql and al depend on the time marching method used.
The pressure required to enforce the continuity equation at every
cell is then calculated by solving a Poisson equation for the pressure
correction /:

r2/ ¼ 1
alDt

ðr ) u&Þ; ð5Þ

or in discrete form:

L/ ¼ 1
alDt

ðDu&Þ; ð6Þ

where D the discrete divergence operator, and L is the discrete
Laplacian operator, L ¼ DG. The velocity and pressure fields are
then updated using:

ujþ1 ¼ u& ' alDtðG/Þ; ð7Þ

and

pjþ1 ¼ p j þ /' alDt
2Re
ðL/Þ; ð8Þ

making ujþ1 divergence free.
The original numerical scheme treats all viscous terms implic-

itly. This would result in the solution of a large sparse matrix,
but this is avoided by an approximate factorization of the sparse
matrix into three tridiagonal matrices; one for each direction
[12]. The tridiagonal matrices are then solved using Thomas’ algo-
rithm, (with a Sherman–Morrison perturbation if the dimension is
periodic), in OðNÞ time. The calculation is thus simplified at the
expense of introducing an error OðDt3Þ. This method was originally
developed and used for small Reynolds number problems, and
without having in mind that data communication between differ-
ent processes could be a bottleneck. The first parallelization
scheme with MPI was a 1D-domain ‘‘slab’’ decomposition, visual-
ized in the left panel of Fig. 3. The main bottlenecks were found
in the all-to-all communications present in the pressure-correction
step and the tridiagonal solver in the direction in which the
domain is decomposed (cf. Table 1 for more details). Slab decom-
positions are easy to implement, but are limited in two ways:
First, the number of MPI processes cannot be larger than N, the
amount of grid points in one dimension. A hybrid MPI-OpenMP
decomposition can take this limit further, but scaling usually does
not go further than 104 cores. Second, the size of the ‘‘halo’’ (or
ghost) cells becomes very significant with increasing number of
cores. Halo cells are cells which overlap the neighbour’s domain,

puy uy

ux,T

ux,T

x

y

z

Fig. 2. Location of pressure, temperature and velocities of a 2D simulation cell. The
third dimension (z) is omitted for clarity. As on an ordinary staggered scheme, the
velocity vectors are placed on the borders of the cell and pressure is placed in the
cell center. The temperature is placed on the same nodes as the vertical velocity, to
ensure exact energy conservation.

Fig. 3. Left panel: Slab-type domain decomposition using four MPI processes. Right
panel: Pencil-type domain decomposition using twelve MPI processes.

12 E.P. van der Poel et al. / Computers & Fluids 116 (2015) 10–16

is the height of the cell L and the velocity scale is the free-fall veloc-
ity Uf ¼

ffiffiffiffiffiffiffiffiffiffiffi
gbDL

p
, where g is gravity and b is the isobaric expansion

coefficient of the fluid. Pr ¼ m=j is the fluid Prandtl number, where
m is the kinematic viscosity and j is the thermal conductivity. The
Rayleigh number is defined in this case as Ra ¼ gbDL3=mj. Finally,
ex is the unitary vector in parallel direction to gravity, which is also
the plate-normal direction.

As mentioned previously, the two horizontal directions are peri-
odic and the vertical direction is wall-bounded. The spatial dis-
cretization used is a conservative second-order centered finite
difference with velocities on a staggered grid. The pressure is cal-
culated at the center of the cell while the temperature field is
located on the ux grid. This is to avoid the interpolation error when
calculating the term hex in Eq. (2). The scheme is energy conserving
in the limit Dt ! 0. A two-dimensional (for clarity) schematic of
the discretization is shown in Fig. 2. For the case of thermal con-
vection an additional advantage of using FDS is present: the
absence of pressure in the advection/diffusion equation for scalars
can cause very sharp gradients in the temperature (scalar) field
[38] and low-order schemes fare better in this situation.

Time marching is performed with a fractional-step third-order
Runge–Kutta (RK3) scheme, in combination with a Crank–
Nicholson scheme [9] for the implicit terms. A second-order
Adams–Bashforth (AB2) method is additionally implemented.
However, in all production runs the RK3 method takes precedence
over AB2 even though the total RK3 time step includes three sub-
steps as compared to one for AB2. The theoretical stability limit of
AB2 and RK3 are CFL numbers lower than 1 and

ffiffiffi
3
p

, respectively. In
practice, the maximum CFL numbers of AB2 and RK3 are approxi-
mately 0.3 and 1.3, respectively. Because of three times higher
amount of substeps in RK3, the computational cost is proportion-
ally higher compared to AB2. Nevertheless, RK3 is more efficient
as the progression in physical time per computational cost is bet-
ter. In addition, even though the Crank–Nicholson integration with
Oð½Dt$2Þ error is the weakest link, the Oð½Dt$3Þ error of RK3
decreases the total error significantly compared to the Oð½Dt$2Þ
error of AB2. In addition, RK3 is self-starting at each time step
without decreasing the accuracy and without needing additional
information in the restart file. AB2 would require two continuation
files per quantity.

The pressure gradient is introduced through the ‘‘delta’’ form of
the pressure [39]: an intermediate, non-solenoidal velocity field u&

is calculated using the non-linear, the viscous and the buoyancy
terms in the Navier–Stokes equation, as well as the pressure at
the current time sub-step:

u& ' u j

Dt
¼ clH

j þ qlH
j'1 ' alGp j þ alðA j

x þA
j
y þA

j
zÞ
ðu& þ u jÞ

2

" #
;

ð4Þ

where the superscript j denotes the substep, Ai is the discrete dif-
ferential relationship for the viscous terms in the ith-direction, G
the discrete gradient operator and H j all explicit terms. The coeffi-
cients cl; ql and al depend on the time marching method used.
The pressure required to enforce the continuity equation at every
cell is then calculated by solving a Poisson equation for the pressure
correction /:

r2/ ¼ 1
alDt

ðr ) u&Þ; ð5Þ

or in discrete form:

L/ ¼ 1
alDt

ðDu&Þ; ð6Þ

where D the discrete divergence operator, and L is the discrete
Laplacian operator, L ¼ DG. The velocity and pressure fields are
then updated using:

ujþ1 ¼ u& ' alDtðG/Þ; ð7Þ

and

pjþ1 ¼ p j þ /' alDt
2Re
ðL/Þ; ð8Þ

making ujþ1 divergence free.
The original numerical scheme treats all viscous terms implic-

itly. This would result in the solution of a large sparse matrix,
but this is avoided by an approximate factorization of the sparse
matrix into three tridiagonal matrices; one for each direction
[12]. The tridiagonal matrices are then solved using Thomas’ algo-
rithm, (with a Sherman–Morrison perturbation if the dimension is
periodic), in OðNÞ time. The calculation is thus simplified at the
expense of introducing an error OðDt3Þ. This method was originally
developed and used for small Reynolds number problems, and
without having in mind that data communication between differ-
ent processes could be a bottleneck. The first parallelization
scheme with MPI was a 1D-domain ‘‘slab’’ decomposition, visual-
ized in the left panel of Fig. 3. The main bottlenecks were found
in the all-to-all communications present in the pressure-correction
step and the tridiagonal solver in the direction in which the
domain is decomposed (cf. Table 1 for more details). Slab decom-
positions are easy to implement, but are limited in two ways:
First, the number of MPI processes cannot be larger than N, the
amount of grid points in one dimension. A hybrid MPI-OpenMP
decomposition can take this limit further, but scaling usually does
not go further than 104 cores. Second, the size of the ‘‘halo’’ (or
ghost) cells becomes very significant with increasing number of
cores. Halo cells are cells which overlap the neighbour’s domain,

puy uy

ux,T

ux,T

x

y

z

Fig. 2. Location of pressure, temperature and velocities of a 2D simulation cell. The
third dimension (z) is omitted for clarity. As on an ordinary staggered scheme, the
velocity vectors are placed on the borders of the cell and pressure is placed in the
cell center. The temperature is placed on the same nodes as the vertical velocity, to
ensure exact energy conservation.

Fig. 3. Left panel: Slab-type domain decomposition using four MPI processes. Right
panel: Pencil-type domain decomposition using twelve MPI processes.

12 E.P. van der Poel et al. / Computers & Fluids 116 (2015) 10–16

1) Intermediate non-solenoidal velocity field is calculated using non-linear, viscous, 
buoyancy and pressure at the current time sub-step  

At each sub-step: 

2) Pressure correction is calculated solving the following Poisson equation 

3) The velocity and pressure are then updated using: 

AFiD Code 



10  

AFiD Code 
Parallel implementation 

•  For large Ra numbers (large temperature difference), the implicit integration of 
the viscous terms in the horizontal directions becomes unnecessary 

•  This simplifies the parallel implementation: 

•  Only the Poisson solver requires global communication 

•  The code uses a pencil-type decomposition, more general than a slab-type one 

is the height of the cell L and the velocity scale is the free-fall veloc-
ity Uf ¼

ffiffiffiffiffiffiffiffiffiffiffi
gbDL

p
, where g is gravity and b is the isobaric expansion

coefficient of the fluid. Pr ¼ m=j is the fluid Prandtl number, where
m is the kinematic viscosity and j is the thermal conductivity. The
Rayleigh number is defined in this case as Ra ¼ gbDL3=mj. Finally,
ex is the unitary vector in parallel direction to gravity, which is also
the plate-normal direction.

As mentioned previously, the two horizontal directions are peri-
odic and the vertical direction is wall-bounded. The spatial dis-
cretization used is a conservative second-order centered finite
difference with velocities on a staggered grid. The pressure is cal-
culated at the center of the cell while the temperature field is
located on the ux grid. This is to avoid the interpolation error when
calculating the term hex in Eq. (2). The scheme is energy conserving
in the limit Dt ! 0. A two-dimensional (for clarity) schematic of
the discretization is shown in Fig. 2. For the case of thermal con-
vection an additional advantage of using FDS is present: the
absence of pressure in the advection/diffusion equation for scalars
can cause very sharp gradients in the temperature (scalar) field
[38] and low-order schemes fare better in this situation.

Time marching is performed with a fractional-step third-order
Runge–Kutta (RK3) scheme, in combination with a Crank–
Nicholson scheme [9] for the implicit terms. A second-order
Adams–Bashforth (AB2) method is additionally implemented.
However, in all production runs the RK3 method takes precedence
over AB2 even though the total RK3 time step includes three sub-
steps as compared to one for AB2. The theoretical stability limit of
AB2 and RK3 are CFL numbers lower than 1 and

ffiffiffi
3
p

, respectively. In
practice, the maximum CFL numbers of AB2 and RK3 are approxi-
mately 0.3 and 1.3, respectively. Because of three times higher
amount of substeps in RK3, the computational cost is proportion-
ally higher compared to AB2. Nevertheless, RK3 is more efficient
as the progression in physical time per computational cost is bet-
ter. In addition, even though the Crank–Nicholson integration with
Oð½Dt$2Þ error is the weakest link, the Oð½Dt$3Þ error of RK3
decreases the total error significantly compared to the Oð½Dt$2Þ
error of AB2. In addition, RK3 is self-starting at each time step
without decreasing the accuracy and without needing additional
information in the restart file. AB2 would require two continuation
files per quantity.

The pressure gradient is introduced through the ‘‘delta’’ form of
the pressure [39]: an intermediate, non-solenoidal velocity field u&

is calculated using the non-linear, the viscous and the buoyancy
terms in the Navier–Stokes equation, as well as the pressure at
the current time sub-step:

u& ' u j

Dt
¼ clH

j þ qlH
j'1 ' alGp j þ alðA j

x þA
j
y þA

j
zÞ
ðu& þ u jÞ

2

" #
;

ð4Þ

where the superscript j denotes the substep, Ai is the discrete dif-
ferential relationship for the viscous terms in the ith-direction, G
the discrete gradient operator and H j all explicit terms. The coeffi-
cients cl; ql and al depend on the time marching method used.
The pressure required to enforce the continuity equation at every
cell is then calculated by solving a Poisson equation for the pressure
correction /:

r2/ ¼ 1
alDt

ðr ) u&Þ; ð5Þ

or in discrete form:

L/ ¼ 1
alDt

ðDu&Þ; ð6Þ

where D the discrete divergence operator, and L is the discrete
Laplacian operator, L ¼ DG. The velocity and pressure fields are
then updated using:

ujþ1 ¼ u& ' alDtðG/Þ; ð7Þ

and

pjþ1 ¼ p j þ /' alDt
2Re
ðL/Þ; ð8Þ

making ujþ1 divergence free.
The original numerical scheme treats all viscous terms implic-

itly. This would result in the solution of a large sparse matrix,
but this is avoided by an approximate factorization of the sparse
matrix into three tridiagonal matrices; one for each direction
[12]. The tridiagonal matrices are then solved using Thomas’ algo-
rithm, (with a Sherman–Morrison perturbation if the dimension is
periodic), in OðNÞ time. The calculation is thus simplified at the
expense of introducing an error OðDt3Þ. This method was originally
developed and used for small Reynolds number problems, and
without having in mind that data communication between differ-
ent processes could be a bottleneck. The first parallelization
scheme with MPI was a 1D-domain ‘‘slab’’ decomposition, visual-
ized in the left panel of Fig. 3. The main bottlenecks were found
in the all-to-all communications present in the pressure-correction
step and the tridiagonal solver in the direction in which the
domain is decomposed (cf. Table 1 for more details). Slab decom-
positions are easy to implement, but are limited in two ways:
First, the number of MPI processes cannot be larger than N, the
amount of grid points in one dimension. A hybrid MPI-OpenMP
decomposition can take this limit further, but scaling usually does
not go further than 104 cores. Second, the size of the ‘‘halo’’ (or
ghost) cells becomes very significant with increasing number of
cores. Halo cells are cells which overlap the neighbour’s domain,

puy uy

ux,T

ux,T

x

y

z

Fig. 2. Location of pressure, temperature and velocities of a 2D simulation cell. The
third dimension (z) is omitted for clarity. As on an ordinary staggered scheme, the
velocity vectors are placed on the borders of the cell and pressure is placed in the
cell center. The temperature is placed on the same nodes as the vertical velocity, to
ensure exact energy conservation.

Fig. 3. Left panel: Slab-type domain decomposition using four MPI processes. Right
panel: Pencil-type domain decomposition using twelve MPI processes.

12 E.P. van der Poel et al. / Computers & Fluids 116 (2015) 10–16

•  The pencil decomposition is based on the Decomp2D library (www.2decomp.org) 
 



11  

AFiD Code 
Poisson solver 

physical upper bound of Nu ! Ra1=2 [43], indicating that for the
mild assumptions made, the criteria c 6 1=2 is always satisfied.
This signifies that the scaling of Dtu"ru is more restrictive than
Dtmr2u, which results in that using only the non-linear CFL con-
straint in the time-marching algorithm, inherently satisfies the sta-
bility constraints imposed by the explicit integration of the
horizontal components of the viscous terms. Including the vertical
non-uniform grid in this derivation makes this statement even
more valid, as the used CFL time step is based on this grid (Eq.
(9)). Inherent to the big-O-notation is the absorption of the coeffi-
cients and offsets. This makes this derivation only valid for high Ra
flows. For low Ra, the solver will be unstable the viscous constraint
is not satisfied in this regime.

In addition, we note that the previous analysis can be applied
for the scalar (temperature) equation as long as Pr ! Oð1Þ.
If Pr % 1, which is the case in some applications, the CFL con-
straint on the horizontal conductive terms becomes Dtjr2T !

O Pr
1
2Ra

1
2ðDyÞ2

! "
, which means a stricter restriction on the time-

step than Eq. (13). This means that the Ra of the flow required to
make Dtu"ru 6 Dtjr2T will be higher.

5. Code parallelization

In the previous section, we reasoned that for large Ra the impli-
cit integration of the viscous terms in the horizontal direction
becomes unnecessary. The calculation becomes local in space as
the two horizontal directions no longer require implicit solvers
to calculate the intermediate velocity field u&. In this case it is
worth decomposing the domain such that the pencils are aligned
in the wall-normal (x) direction, i.e. that every processor possesses
data from x1 to xN (cf. Fig. 4). Halo updates must still be performed
during the computation of u&, but this memory distribution com-
pletely eliminates all the all-to-all communications associated to
the viscous implicit solvers, as for every pair ðy; zÞ, a single proces-
sor has the full x information, and is able to solve the implicit equa-
tion in x for the pair ðy; zÞ without further communication.

All-to-all communications are unavoidable during the pressure
correction step, as a Poisson equation must be solved. As the two
wall-parallel directions are homogeneous and periodic, it is natural
to solve the Poisson equation using a Fourier decomposition in two
dimensions. Fourier transforming variables / and the right side in
Eq. (5) reduces the pressure correction equation to:

@2

@x2 'x2
y;j 'x2

z;k

 !
F ð/Þ ¼ F 1

alDt
ðDu&Þ

# $
ð15Þ

where F ð"Þ denotes the 2D Fourier transform operator, and xy;j and
xz;k denote the j-th and k-th modified wavenumbers in y and z
direction respectively, defined as:

xy;j ¼
1' cos 2pðj'1Þ

Ny

h i! "
D'2

y : for j 6 1
2 Ny þ 1

1' cos 2pðNy'jþ1ÞÞ
Ny

h i! "
D'2

y : otherwise

8
><

>:

and xz;k is defined in an analogous way. A modified wavenumber is
used, instead of the real wavenumber, to prevent that the Laplacian
has higher accuracy in some dimensions. In the limit Dy! 0, the
modified wavenumbers converge to the real wavenumbers.

By using a second order approximation for @2
x , the left hand side

of the equation is reduced to a tridiagonal matrix, and thus the
Poisson equation is reduced to a 2D FFT followed by a tridiagonal
(Thomas) solver. This allows for the exact solution of the Poisson
equation in a single iteration with OðNxNyNz log½Ny+ log½Nz+Þ time
complexity. Due to the domain decomposition, several data trans-
poses must be performed during the computation of the equation.
The algorithm for solving the Poisson equation is as follows:

1. Calculate ðDu&Þ=ðalDtÞ from the x-decomposed velocities.
2. Transpose the result of (1) from a x-decomposition to a

y-decomposition.
3. Perform a real-to-complex Fourier transform on (2) in the y

direction.
4. Transpose (3) from a y-decomposition to z-decomposition.
5. Perform a complex-to-complex Fourier transform on (4) in

the z direction.
6. Transpose (5) from a z-decomposition to a x-decomposition.
7. Solve the linear system of Eq. (15) with a tridiagonal solver

in the x-direction.
8. Transpose the result of (7) from a x-decomposition to a

z-decomposition.
9. Perform a complex-to-complex inverse Fourier transform on

(8) in z direction.
10. Transpose (9) from a z-decomposition to a y-decomposition.
11. Perform a complex-to-real inverse Fourier transform on (10)

in a y direction.
12. Transpose (11) from a y-decomposition to a

x-decomposition.

The last step outputs / in real space, decomposed in x-oriented
pencils, ready for applying in Eqs. (7) and (8). Once the Poisson
equation is solved, the corrected velocities and pressures are com-
puted using Eqs. (7) and (8). The temperature and other scalars are
advected and the time sub-step is completed. The algorithm out-
lined above only transposes one 3D array, instead of three velocity
fields, making it very efficient. Fig. 4 shows a schematic of the data
arrangement and the transposes needed to implement the algo-
rithm. We wish to highlight that this algorithm also uses all possi-
ble combinations of data transposes. It can be seen from Fig. 4 that
the x to z transposes and the z to x transposes need a more complex
structure, as a process may need to transfer data to other processes
which are not immediate neighbours. The non-overlapping of data
before and after transposes is most striking for e.g. process 10 in
Fig. 4 with no overlap at all between x and z oriented pencils.
These transposes are absent in the 2DECOMP library on which
we build. These transposes have been implemented using the
more flexible all-to-all calls of the type ALLTOALLW, instead of

Fig. 4. Domain decomposition of a 16, 12, 10 grid using 12 distributed memory processes on a 4, 3 process grid. Only data that is exclusive to one process is shown; i.e. a
1 gridpoint-sized halo is transparent in this figure. The pencils are (a) x, (b) y or (c) z oriented.

14 E.P. van der Poel et al. / Computers & Fluids 116 (2015) 10–16

physical upper bound of Nu ! Ra1=2 [43], indicating that for the
mild assumptions made, the criteria c 6 1=2 is always satisfied.
This signifies that the scaling of Dtu"ru is more restrictive than
Dtmr2u, which results in that using only the non-linear CFL con-
straint in the time-marching algorithm, inherently satisfies the sta-
bility constraints imposed by the explicit integration of the
horizontal components of the viscous terms. Including the vertical
non-uniform grid in this derivation makes this statement even
more valid, as the used CFL time step is based on this grid (Eq.
(9)). Inherent to the big-O-notation is the absorption of the coeffi-
cients and offsets. This makes this derivation only valid for high Ra
flows. For low Ra, the solver will be unstable the viscous constraint
is not satisfied in this regime.

In addition, we note that the previous analysis can be applied
for the scalar (temperature) equation as long as Pr ! Oð1Þ.
If Pr % 1, which is the case in some applications, the CFL con-
straint on the horizontal conductive terms becomes Dtjr2T !

O Pr
1
2Ra

1
2ðDyÞ2

! "
, which means a stricter restriction on the time-

step than Eq. (13). This means that the Ra of the flow required to
make Dtu"ru 6 Dtjr2T will be higher.

5. Code parallelization

In the previous section, we reasoned that for large Ra the impli-
cit integration of the viscous terms in the horizontal direction
becomes unnecessary. The calculation becomes local in space as
the two horizontal directions no longer require implicit solvers
to calculate the intermediate velocity field u&. In this case it is
worth decomposing the domain such that the pencils are aligned
in the wall-normal (x) direction, i.e. that every processor possesses
data from x1 to xN (cf. Fig. 4). Halo updates must still be performed
during the computation of u&, but this memory distribution com-
pletely eliminates all the all-to-all communications associated to
the viscous implicit solvers, as for every pair ðy; zÞ, a single proces-
sor has the full x information, and is able to solve the implicit equa-
tion in x for the pair ðy; zÞ without further communication.

All-to-all communications are unavoidable during the pressure
correction step, as a Poisson equation must be solved. As the two
wall-parallel directions are homogeneous and periodic, it is natural
to solve the Poisson equation using a Fourier decomposition in two
dimensions. Fourier transforming variables / and the right side in
Eq. (5) reduces the pressure correction equation to:

@2

@x2 'x2
y;j 'x2

z;k

 !
F ð/Þ ¼ F 1

alDt
ðDu&Þ

# $
ð15Þ

where F ð"Þ denotes the 2D Fourier transform operator, and xy;j and
xz;k denote the j-th and k-th modified wavenumbers in y and z
direction respectively, defined as:

xy;j ¼
1' cos 2pðj'1Þ

Ny

h i! "
D'2

y : for j 6 1
2 Ny þ 1

1' cos 2pðNy'jþ1ÞÞ
Ny

h i! "
D'2

y : otherwise

8
><

>:

and xz;k is defined in an analogous way. A modified wavenumber is
used, instead of the real wavenumber, to prevent that the Laplacian
has higher accuracy in some dimensions. In the limit Dy! 0, the
modified wavenumbers converge to the real wavenumbers.

By using a second order approximation for @2
x , the left hand side

of the equation is reduced to a tridiagonal matrix, and thus the
Poisson equation is reduced to a 2D FFT followed by a tridiagonal
(Thomas) solver. This allows for the exact solution of the Poisson
equation in a single iteration with OðNxNyNz log½Ny+ log½Nz+Þ time
complexity. Due to the domain decomposition, several data trans-
poses must be performed during the computation of the equation.
The algorithm for solving the Poisson equation is as follows:

1. Calculate ðDu&Þ=ðalDtÞ from the x-decomposed velocities.
2. Transpose the result of (1) from a x-decomposition to a

y-decomposition.
3. Perform a real-to-complex Fourier transform on (2) in the y

direction.
4. Transpose (3) from a y-decomposition to z-decomposition.
5. Perform a complex-to-complex Fourier transform on (4) in

the z direction.
6. Transpose (5) from a z-decomposition to a x-decomposition.
7. Solve the linear system of Eq. (15) with a tridiagonal solver

in the x-direction.
8. Transpose the result of (7) from a x-decomposition to a

z-decomposition.
9. Perform a complex-to-complex inverse Fourier transform on

(8) in z direction.
10. Transpose (9) from a z-decomposition to a y-decomposition.
11. Perform a complex-to-real inverse Fourier transform on (10)

in a y direction.
12. Transpose (11) from a y-decomposition to a

x-decomposition.

The last step outputs / in real space, decomposed in x-oriented
pencils, ready for applying in Eqs. (7) and (8). Once the Poisson
equation is solved, the corrected velocities and pressures are com-
puted using Eqs. (7) and (8). The temperature and other scalars are
advected and the time sub-step is completed. The algorithm out-
lined above only transposes one 3D array, instead of three velocity
fields, making it very efficient. Fig. 4 shows a schematic of the data
arrangement and the transposes needed to implement the algo-
rithm. We wish to highlight that this algorithm also uses all possi-
ble combinations of data transposes. It can be seen from Fig. 4 that
the x to z transposes and the z to x transposes need a more complex
structure, as a process may need to transfer data to other processes
which are not immediate neighbours. The non-overlapping of data
before and after transposes is most striking for e.g. process 10 in
Fig. 4 with no overlap at all between x and z oriented pencils.
These transposes are absent in the 2DECOMP library on which
we build. These transposes have been implemented using the
more flexible all-to-all calls of the type ALLTOALLW, instead of

Fig. 4. Domain decomposition of a 16, 12, 10 grid using 12 distributed memory processes on a 4, 3 process grid. Only data that is exclusive to one process is shown; i.e. a
1 gridpoint-sized halo is transparent in this figure. The pencils are (a) x, (b) y or (c) z oriented.

14 E.P. van der Poel et al. / Computers & Fluids 116 (2015) 10–16

•  The solution of the Poisson equation is always the critical part in incompressible solvers 
 
•  Direct solver:  

•  Fourier decomposition in the horizontal plane  
•  Tridiagonal solver in the normal direction 

(modified wave numbers) 



12  

AFiD Code 
Poisson solver 

1)  FFT the r.h.s  along y – (b)  (from real NX x NY x NZ to complex NX x (NY+1)/2 x NZ) 

2)  FFT the r.h.s. along z – (c)  (from complex NX x (NY+1)/2 x NZ to complex NX x (NY+1)/2 x NZ ) 

3)  Solve tridiagonal system in x for each y and z wavenumber - (a) 

4)  Inverse FFT the solution along z – (c)  (from complex NX x (NY+1)/2 x NZ to complex NX x (NY+1)/2 x NZ ) 

5)  Inverse FFT the solution along y – (b) (from complex NX x (NY+1)/2 x NZ to real NX x NY x NZ) 

physical upper bound of Nu ! Ra1=2 [43], indicating that for the
mild assumptions made, the criteria c 6 1=2 is always satisfied.
This signifies that the scaling of Dtu"ru is more restrictive than
Dtmr2u, which results in that using only the non-linear CFL con-
straint in the time-marching algorithm, inherently satisfies the sta-
bility constraints imposed by the explicit integration of the
horizontal components of the viscous terms. Including the vertical
non-uniform grid in this derivation makes this statement even
more valid, as the used CFL time step is based on this grid (Eq.
(9)). Inherent to the big-O-notation is the absorption of the coeffi-
cients and offsets. This makes this derivation only valid for high Ra
flows. For low Ra, the solver will be unstable the viscous constraint
is not satisfied in this regime.

In addition, we note that the previous analysis can be applied
for the scalar (temperature) equation as long as Pr ! Oð1Þ.
If Pr % 1, which is the case in some applications, the CFL con-
straint on the horizontal conductive terms becomes Dtjr2T !

O Pr
1
2Ra

1
2ðDyÞ2

! "
, which means a stricter restriction on the time-

step than Eq. (13). This means that the Ra of the flow required to
make Dtu"ru 6 Dtjr2T will be higher.

5. Code parallelization

In the previous section, we reasoned that for large Ra the impli-
cit integration of the viscous terms in the horizontal direction
becomes unnecessary. The calculation becomes local in space as
the two horizontal directions no longer require implicit solvers
to calculate the intermediate velocity field u&. In this case it is
worth decomposing the domain such that the pencils are aligned
in the wall-normal (x) direction, i.e. that every processor possesses
data from x1 to xN (cf. Fig. 4). Halo updates must still be performed
during the computation of u&, but this memory distribution com-
pletely eliminates all the all-to-all communications associated to
the viscous implicit solvers, as for every pair ðy; zÞ, a single proces-
sor has the full x information, and is able to solve the implicit equa-
tion in x for the pair ðy; zÞ without further communication.

All-to-all communications are unavoidable during the pressure
correction step, as a Poisson equation must be solved. As the two
wall-parallel directions are homogeneous and periodic, it is natural
to solve the Poisson equation using a Fourier decomposition in two
dimensions. Fourier transforming variables / and the right side in
Eq. (5) reduces the pressure correction equation to:

@2

@x2 'x2
y;j 'x2

z;k

 !
F ð/Þ ¼ F 1

alDt
ðDu&Þ

# $
ð15Þ

where F ð"Þ denotes the 2D Fourier transform operator, and xy;j and
xz;k denote the j-th and k-th modified wavenumbers in y and z
direction respectively, defined as:

xy;j ¼
1' cos 2pðj'1Þ

Ny

h i! "
D'2

y : for j 6 1
2 Ny þ 1

1' cos 2pðNy'jþ1ÞÞ
Ny

h i! "
D'2

y : otherwise

8
><

>:

and xz;k is defined in an analogous way. A modified wavenumber is
used, instead of the real wavenumber, to prevent that the Laplacian
has higher accuracy in some dimensions. In the limit Dy! 0, the
modified wavenumbers converge to the real wavenumbers.

By using a second order approximation for @2
x , the left hand side

of the equation is reduced to a tridiagonal matrix, and thus the
Poisson equation is reduced to a 2D FFT followed by a tridiagonal
(Thomas) solver. This allows for the exact solution of the Poisson
equation in a single iteration with OðNxNyNz log½Ny+ log½Nz+Þ time
complexity. Due to the domain decomposition, several data trans-
poses must be performed during the computation of the equation.
The algorithm for solving the Poisson equation is as follows:

1. Calculate ðDu&Þ=ðalDtÞ from the x-decomposed velocities.
2. Transpose the result of (1) from a x-decomposition to a

y-decomposition.
3. Perform a real-to-complex Fourier transform on (2) in the y

direction.
4. Transpose (3) from a y-decomposition to z-decomposition.
5. Perform a complex-to-complex Fourier transform on (4) in

the z direction.
6. Transpose (5) from a z-decomposition to a x-decomposition.
7. Solve the linear system of Eq. (15) with a tridiagonal solver

in the x-direction.
8. Transpose the result of (7) from a x-decomposition to a

z-decomposition.
9. Perform a complex-to-complex inverse Fourier transform on

(8) in z direction.
10. Transpose (9) from a z-decomposition to a y-decomposition.
11. Perform a complex-to-real inverse Fourier transform on (10)

in a y direction.
12. Transpose (11) from a y-decomposition to a

x-decomposition.

The last step outputs / in real space, decomposed in x-oriented
pencils, ready for applying in Eqs. (7) and (8). Once the Poisson
equation is solved, the corrected velocities and pressures are com-
puted using Eqs. (7) and (8). The temperature and other scalars are
advected and the time sub-step is completed. The algorithm out-
lined above only transposes one 3D array, instead of three velocity
fields, making it very efficient. Fig. 4 shows a schematic of the data
arrangement and the transposes needed to implement the algo-
rithm. We wish to highlight that this algorithm also uses all possi-
ble combinations of data transposes. It can be seen from Fig. 4 that
the x to z transposes and the z to x transposes need a more complex
structure, as a process may need to transfer data to other processes
which are not immediate neighbours. The non-overlapping of data
before and after transposes is most striking for e.g. process 10 in
Fig. 4 with no overlap at all between x and z oriented pencils.
These transposes are absent in the 2DECOMP library on which
we build. These transposes have been implemented using the
more flexible all-to-all calls of the type ALLTOALLW, instead of

Fig. 4. Domain decomposition of a 16, 12, 10 grid using 12 distributed memory processes on a 4, 3 process grid. Only data that is exclusive to one process is shown; i.e. a
1 gridpoint-sized halo is transparent in this figure. The pencils are (a) x, (b) y or (c) z oriented.

14 E.P. van der Poel et al. / Computers & Fluids 116 (2015) 10–16



13  

GPU IMPLEMENTATION 



14  

Porting Strategy 
 

Since the code is in Fortran 90, natural choices are CUDA Fortran or OpenACC 

  

Choice of CUDA Fortran motivated by: 

•  Personal preference 

•  Use of CUF kernels made effort comparable to OpenACC 

•  Explicit data movement is important to optimize CPU/GPU data transfers and network traffic 

•  Easier to work around compiler/library bugs 

•  Explicit kernels when/if needed 

 

 



15  

CUDA Fortran 

•  CUDA is a scalable model for parallel computing 

•  CUDA Fortran is the Fortran analog to CUDA C 

–  Program has host and device code similar to CUDA C 

–  Host code is based on the runtime API 

–  Fortran language extensions to simplify data 
management 

•  CUDA Fortran implemented in the PGI compilers 



16  

Kernel Loop Directives (CUF Kernels) 

program incTest   
  use cudafor 
  implicit none 
  integer, parameter :: n = 256 
  integer :: a(n), b 
  integer, device :: a_d(n) 
 
  a = 1; b = 3; a_d = a 
 
  !$cuf kernel do <<<*,*>>> 
  do i = 1, n 
     a_d(i) = a_d(i)+b 
  enddo 
 
  a = a_d 
  if (all(a == 4)) write(*,*) 'Test Passed' 
end program incTest 

Automatic kernel generation and invocation of host code region (arrays 
used in loops must reside on GPU) 



17  

Kernel Loop Directives (CUF Kernels) 

•  Compiler recognizes use of scalar reduction and generates one result 
rsum = 0.0 
!$cuf kernel do <<<*,*>>> 
do i = 1, nx 
  rsum = rsum + a_d(i) 
enddo 

•  Multidimensional arrays 

•  Can specify parts of execution parameter 

!$cuf kernel do(2) <<< *,* >>> 
do j = 1, ny 
  do i = 1, nx 
    a_d(i,j) = b_d(i,j) + c_d(i,j) 
  enddo 
enddo 

!$cuf kernel do(2) <<<(*,*),(32,4)>>>   



18  

GPU CODE CPU CODE 

Libraries 

I/O: HDF5 

FFT: FFTW (guru plan) 

Linear algebra: BLAS+LAPACK 

Distributed memory: MPI, 2DDecomp 
with additional x-z and z-x transpose 

Multicore: OpenMP 

I/O: HDF5 

FFT: CUFFT 

Linear algebra: custom kernels 

Distributed memory: MPI, 2DDecomp 
with improved x-z and z-x transpose 

Manycore: CUDA Fortran 



19  

Build System 
Original code: 

 -Build system based on autoconfig 

 -Double precision enabled with compiler flag 

New code:  

 - Build system based on Makefile 

 - Single source code for CPU, GPU and hybrid versions 

 - Files with .F90 suffix 

 - Use of preprocessor to enable/guard GPU and hybrid code 

 - Explicit control of precision   

 - Single Makefile to generate both the CPU, GPU and hybrid  binaries (very important to verify results) 

 - CPU binary can be generated with any compiler ( PGI, Intel, Cray, Gnu) 

 - GPU and hybrid  binaries requires PGI (v15.7 or 16.x) 

 



20  

Details 

•  Variables renaming from modules: 

            #ifdef USE_CUDA    
   use cudafor   
   use local_arrays, only: vx => vx_d, vy => vy_d, vz => vz_d   
 #else   
   use local_arrays, only: vx,vy,vz   
 #endif  

            subroutine ExplicitTermsVX(qcap)   
        implicit none 
        real(fp_kind), dimension(1:nx,xstart(2):xend(2),xstart(3):xend(3)),intent(OUT)  :: qcap   
     #ifdef USE_CUDA   
         attributes(device) :: vx,vy,vz,temp,qcap,udx3c   
      #endif   

•  F2003 sourced allocation: 
      allocate(array_b, source=array_a)   

 
•  Allocates array_b  with the same bounds of array_a 
•  Initializes array_b with values of array_a   
•  If array_b is defined with the device attribute, allocation will be on the GPU and host-to-device data transfer occurs 

•  Use attribute(device): 

   

•  Use of generic interfaces: 

   Interface updateQuantity   
 module procedure updateQuantity_cpu   
 module procedure updateQuantity_gpu   

end interface updateQuantity    



21  

Code Example 
subroutine CalcMaxCFL(cflm) 
 
#ifdef USE_CUDA 
  use cudafor 
  use param, only: fp_kind, nxm, dy => dy_d, dz => dz_d, udx3m => udx3m_d 
  use local_arrays, only: vx => vx_d, vy => vy_d, vz => vz_d 
#else 
  use param, only: fp_kind, nxm, dy, dz, udx3m 
  use local_arrays, only: vx,vy,vz 
#endif 
  use decomp_2d 
  use mpih 
  implicit none 
  realintent(out)    :: cflm 
  integer :: j,k,jp,kp,i,ip 
  real :: qcf 
   
  cflm=0.00000001d0 
 
#ifdef USE_CUDA 
  !$cuf kernel do(3) <<<*,*>>> 
#else 
  !$OMP  PARALLEL DO & 
  !$OMP   DEFAULT(none) & 
  !$OMP   SHARED(xstart,xend,nxm,vz,vy,vx) & 
  !$OMP   SHARED(dz,dy,udx3m) & 
  !$OMP   PRIVATE(i,j,k,ip,jp,kp,qcf) & 
  !$OMP   REDUCTION(max:cflm) 
#endif 
  do i=xstart(3),xend(3) 
     ip=i+1 
     do j=xstart(2),xend(2) 
        jp=j+1 
        do k=1,nxm 
           kp=k+1 
           qcf=( abs((vz(k,j,i)+vz(k,j,ip))*0.5d0*dz) & 
                  +abs((vy(k,j,i)+vy(k,jp,i))*0.5d0*dy) & 
                  +abs((vx(k,j,i)+vx(kp,j,i))*0.5d0*udx3m(k))) 
            
           cflm = max(cflm,qcf) 
        enddo 
     enddo 
  enddo 
#ifndef USE_CUDA 
  !$OMP END PARALLEL DO 
#endif 
  call MpiAllMaxRealScalar(cflm) 
 
  return   
end 

subroutine CalcMaxCFL(cflm) 
 
#ifdef USE_CUDA 
  use cudafor 
  use param, only: fp_kind, nxm, dy => dy_d, dz => dz_d, udx3m => udx3m_d 
  use local_arrays, only: vx => vx_d, vy => vy_d, vz => vz_d 
#else 
  use param, only: fp_kind, nxm, dy, dz, udx3m 
  use local_arrays, only: vx,vy,vz 
#endif 
  use decomp_2d 
  use mpih 
  implicit none 
  real(fp_kind),intent(out)    :: cflm 
  integer :: j,k,jp,kp,i,ip 
  real(fp_kind) :: qcf 
   
  cflm=real(0.00000001,fp_kind) 
 
#ifdef USE_CUDA 
  !$cuf kernel do(3) <<<*,*>>> 
#endif 
  !$OMP  PARALLEL DO & 
  !$OMP   DEFAULT(none) & 
  !$OMP   SHARED(xstart,xend,nxm,vz,vy,vx) & 
  !$OMP   SHARED(dz,dy,udx3m) & 
  !$OMP   PRIVATE(i,j,k,ip,jp,kp,qcf) & 
  !$OMP   REDUCTION(max:cflm) 
 
  do i=xstart(3),xend(3) 
     ip=i+1 
     do j=xstart(2),xend(2) 
        jp=j+1 
        do k=1,nxm 
           kp=k+1 
           qcf=( abs((vz(k,j,i)+vz(k,j,ip))*real(0.5,fp_kind)*dz) & 
                  +abs((vy(k,j,i)+vy(k,jp,i))*real(0.5,fp_kind)*dy) & 
                  +abs((vx(k,j,i)+vx(kp,j,i))*real(0.5,fp_kind)*udx3m(k))) 
            
           cflm = max(cflm,qcf) 
        enddo 
     enddo 
  enddo 
 
!$OMP END PARALLEL DO 
  
 call MpiAllMaxRealScalar(cflm) 
 
 return   
end 



22  

Transpose 

1 
0 

2 
3 

4 
5 

1 

2 

3 

4 

5 

0 

0 
3 

1 
5 

4 

2 

0 
3 

1 
5 

4 

2 

1 
0 

2 
3 

4 
5 

1 
0 

2 
3 

4 
5 

1 

2 

3 

4 

5 

0 

0 
3 

1 
5 

4 

2 

Original scheme 

Improved scheme 



23  

z

x

y

z

x

GPU CPU

HYBRID VERSION 

z

x

y

z

x

GPU CPU

New hybrid version: 
•  Explicit and implicit terms are computed on both CPU and GPU 
•  Poisson solver is still done on GPU 
•  CPU/GPU ratio as input parameter 

 
Increase the available memory 
 
Trade-off between increasing processing speed and  memory resources 



24  

Profiling 

Profiling is very important to understand bottlenecks and to spot opportunities for 
better interaction between the CPU and the GPU 

For GPU codes, profiling information can be generated with Nvprof and visualized 
with Nvvp 

For CPU+GPU codes, it is possible to annotate the profiling timelines using the 
NVIDIA Tools Extension (NVTX) library 

NVTX from Fortran and CUDA Fortran: 

https://devblogs.nvidia.com/parallelforall/customize-cuda-fortran-profiling-nvtx/ 

 

 

 



25  

NVTX Example 

program main 
  use nvtx 
  character(len=4) :: itcount 
 
  ! First range with standard color 
  call nvtxStartRange("First label”) 
 
  do n=1,14 
    ! Create custom label for each marker 
    write(itcount,'(i4)') n 
 
    ! Range with custom  color 
    call nvtxStartRange("Label "//itcount,n) 
 
    ! Add sleep to make markers big  
    call sleep(1) 
 
    call nvtxEndRange 
  end do 
 
  call nvtxEndRange 
end program main 

$ pgf90 nvtx.cuf -L/usr/local/cuda/lib –lnvToolsExt 

$ nvprof -o profiler.output ./a.out 

 NVPROF is profiling process 10653, command: ./a.out 

 Generated result file: /Users/mfatica/profiler.output 

 



26  

NVVP Example 

40% 

20% 

25% 

15% 

15% 

Profiler output for the hybrid version 



27  

RESULTS 
 



28  

Optimal Configuration 

In auto-tuning mode...... 
 factors:             1            2            3            6            9           18 
 processor grid            1  by            18  time=   0.3238644202550252 
 processor grid            2  by             9  time=   0.8386047548717923 
 processor grid            3  by             6  time=   0.9210867749320136 
 processor grid            6  by             3  time=   0.9363843864864774 
 processor grid            9  by             2  time=   0.8577810128529867 
 processor grid           18  by             1  time=   0.5901912318335639 
 the best processor grid is probably             1  by            18 
 MPI tasks=           18 
 
********  CUDA version ******* 
 grid resolution:  nx=  1025 ny=  1025 nz=  1025 
 
 GPU memory used: 10625.0 - 10832.0 / 11519.6  MBytes 
  GPU memory free:   894.5 -   686.6 / 11519.6  Mbytes 
 
Creating initial condition 
  Initial maximum divergence:    0.2818953478714559 
  Initialization Time =  15.63 sec. 
 
  WallDt     CFL ntime      time      vmax(1)      vmax(2)      vmax(3)         dmax        tempm      tempmax      tempmin        nuslw       nussup 
   0.000   0.000     0     0.000  0.00000E+00  0.00000E+00 0.00000E+00  2.81895E-01 0.00000E+00 0.00000E+00   0.00000E+00 0.00000E+00  0.00000E+00 
   2.675   0.018     2     0.010  0.00000E+00  1.66194E-03  8.31368E-04  2.04477E-15  4.99492E-01  1.00000E+00  1.30278E-04  1.00000E+00  1.00000E+00 
   2.747   0.018     3     0.020  0.00000E+00  1.66190E-03  8.31480E-04  2.71691E-16  4.99492E-01  1.00000E+00  1.30276E-04  1.00000E+00  1.00000E+00 
   2.726   0.018     4     0.030  0.00000E+00  1.66190E-03  8.31655E-04  2.80252E-16  4.99492E-01  1.00000E+00  1.30274E-04  1.00000E+00  1.00000E+00 
   2.725   0.018     5     0.040  0.00000E+00  1.66193E-03  8.31893E-04  2.84318E-16  4.99492E-01  1.00000E+00  1.30271E-04  1.00000E+00  1.00000E+00 

If the 2D processor configuration is not specified as an argument, the code will try to estimate 
the estimate the optimal configuration  
 
GPU code measures the transpose and halo update time 



29  

Memory Footprint 
Memory footprint reduction one of the main goals to increase the mesh size 

10243 

Computer Time per step GPU #GPUs # nodes Mem. Used (MB) Mem. per GPU (MB) 

Piz-Daint 1.65s K20X 36 36 5427-5635 5795 

Cartesius 2.7s K40 18 9 10625-10832 11519 

2015 version 

Piz-Daint 1.7s K20X 32 32 5389-5427 5795 

Cartesius 3.18s K40 16 8 10545-10592 11519 

1.68s K40 32 16 5415-5463 11519 

20483 will fit on Cartesius (SARA) using all the available GPU nodes (64) 
40963 will fit on Piz-Daint (CSCS)  using 2048 (out of 5272)       Now 1600 nodes !!! 

2016 version 

Piz-Daint 2.1s K20X 25 25 5386-5538 5795 



30  

Performance 
Results on K20x with 5795MB of memory (PizDaint) and P100 with 16GB 

2048x3076x3076 

Time per step GPU #GPUs Conf Mem. Used (MB) 

2.4s K20X 640 64x10 5047-5159 

1.58s K20X 1024 64x16 3381-3385 

0.88s K20X 2048 32x64 1828-1837 

0.57s K20X 4096 64x64 1051-1056 

1024x1024x1024 

Time per step GPU #GPUs Conf Mem. Used (MB) 

2.4s P100 9 1x9 15009-15121 

1.7s K20x 32 1x32 5380-5427 

0.34s K20X 256 16x16 821-824 

0.24s K20X 512 32x16 460-470 

0.17s K20X 1024 32x32 322-323 



31  

Performance 



32  

Comparison CPU/GPU Code 

9

Figure 8. Visualization of the temperature field at three times the thermal boundary layer height for (from left to right) Ra = 108, Ra = 109, and
Ra = 1010 for Pr = 1 in a � = 1 cell. Note the increasingly smaller structures that are formed with increasing Ra. The colorbar indicates the non-
dimensional temperature.

Figure 9. Visualization of the temperature field at the thermal boundary layer
height for Ra = 1011 for Pr = 1 in a � = 1 cell. Simulation performed
with CPU and GPU version of the code (snapshot from GPU part of the
simulation) on a 1296⇥ 1536⇥ 1536 computational grid showing the small
scale plume structures formed near the boundary.

40

60

80

100

N
u
(t
)

Nuvol

Nubot

Nutop

Nuεu

Nuεθ

0 50 100 150 200 250 300
Time

40

60

80

100

N
u
(t
)

Nuvol

Nubot

Nutop

Nuεu

Nuεθ

a) GPU

b) CPU

Figure 10. Time resolved Nusselt number obtained using the GPU and CPU
version of the code on a 3843 grid for Ra = 109 and Pr = 1 for a � = 1
cell in the statistical stationary state. Time axis shifted arbitrarily.

0

0.03

0.06

0.09

0.12

σ
(θ
)

0

0.03

0.06

0.09

0.12
σ
(v

x
)

0 0.1 0.2 0.3 0.4 0.5

z/H

0

0.03

0.06

0.09

0.12

σ
(v

y
,z
)

Figure 11. Comparison of the standard deviation � of the temperature
(✓), vertical/wall-normal (v

x

), and horizontal (v
y

, v

z

) velocity fluctuations
obtained from the CPU and GPU version of the code on a 3843 grid for
Ra = 109, Pr = 1 in a � = 1 cell as function of height.

In order to expand the capabilities of the code, we are going
to work on two fronts. The first one will be to utilize the CPU
cores (now completely idle) together with the GPUs. We are
more interested in the CPU memory than the CPU flops, but
subdiving each subdomain

The other front is to use a multiple resolution approach,
using a grid for the temperature field with a higher spatial
resolution than that for the momentum, as integrating both
fields on a single grid tailored to the most demanding variable
produces an unnecessary computational overhead. A multiple
resolution approach is also used in the time integration in
order to maintain the stability of the temperature field on the
fine grid. This approach gives significant wall time (4⇥) and



33  

Effect of Rayleigh number 

9

Figure 8. Visualization of the temperature field at three times the thermal boundary layer height for (from left to right) Ra = 108, Ra = 109, and
Ra = 1010 for Pr = 1 in a � = 1 cell. Note the increasingly smaller structures that are formed with increasing Ra. The colorbar indicates the non-
dimensional temperature.

Figure 9. Visualization of the temperature field at the thermal boundary layer
height for Ra = 1011 for Pr = 1 in a � = 1 cell. Simulation performed
with CPU and GPU version of the code (snapshot from GPU part of the
simulation) on a 1296⇥ 1536⇥ 1536 computational grid showing the small
scale plume structures formed near the boundary.

40

60

80

100

N
u
(t
)

Nuvol

Nubot

Nutop

Nuεu

Nuεθ

0 50 100 150 200 250 300
Time

40

60

80

100

N
u
(t
)

Nuvol

Nubot

Nutop

Nuεu

Nuεθ

a) GPU

b) CPU

Figure 10. Time resolved Nusselt number obtained using the GPU and CPU
version of the code on a 3843 grid for Ra = 109 and Pr = 1 for a � = 1
cell in the statistical stationary state. Time axis shifted arbitrarily.

0

0.03

0.06

0.09

0.12

σ
(θ
)

0

0.03

0.06

0.09

0.12

σ
(v

x
)

0 0.1 0.2 0.3 0.4 0.5

z/H

0

0.03

0.06

0.09

0.12

σ
(v

y
,z
)

Figure 11. Comparison of the standard deviation � of the temperature
(✓), vertical/wall-normal (v

x

), and horizontal (v
y

, v

z

) velocity fluctuations
obtained from the CPU and GPU version of the code on a 3843 grid for
Ra = 109, Pr = 1 in a � = 1 cell as function of height.

In order to expand the capabilities of the code, we are going
to work on two fronts. The first one will be to utilize the CPU
cores (now completely idle) together with the GPUs. We are
more interested in the CPU memory than the CPU flops, but
subdiving each subdomain

The other front is to use a multiple resolution approach,
using a grid for the temperature field with a higher spatial
resolution than that for the momentum, as integrating both
fields on a single grid tailored to the most demanding variable
produces an unnecessary computational overhead. A multiple
resolution approach is also used in the time integration in
order to maintain the stability of the temperature field on the
fine grid. This approach gives significant wall time (4⇥) and

Ra=108 Ra=1010 Ra=109 



34  

CONCLUSIONS 



35  

Conclusions and Future Work 

•  Excellent speed up and scalability 

•  Results have been verified to be correct 

•  The code will be released on Github  

•  The code will be used to push the boundary of RB simulations 

•  Add the multiscale algorithm (finer mesh for temperature equation) to further 
reduce the memory footprint 

•  Pascal GPU with larger memory and improved memory bandwidth are very 
beneficial for this code 


