
W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 1

A MPI/OpenCL hybrid implementation
of the Matrix Element Method

in the context of
the Higgs boson property analyses

G. Grasseau, T. Strebler, A. Chiron,
P. Paganini and F. Beaudette,

Laboratoire Leprince-Ringuet
CNRS/IN2P3, École Polytechnique

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 2

Introduction
● The recently discovered Higgs boson (2012) can

be produced in different ways in pp collisions
@LHC

● The combination of LHC experiments shows an
excess of events when the H is produced in
association with 2 top quarks (ttH channel)

● ttH is an interesting channel to look at Run 2: it
allows probing the top-Higgs Yukawa coupling

● In addition, it has several decay channels
● Among all the ttH channels looked by CMS,

the H decays in 2 ττ (H->ττ) is one of the most
challenging

● LLR team is deeply involved in Matrix Element
Method : VBF, ttH channel (T. Strebler PHD thesis)

E
le

m
en

ta
ry

 p
ar

tic
le

s
of

th

e
S

ta
nd

ar
d

M
od

el
 (

S
M

)

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 3

Theory and observables

● Leptons ℓ+/- , hadronic system h , are precisely reconstructed
● Jet energy reconstructed with a finite resolution
● 's are unobserved but their global (transverse) momentum can be inferred

from the MET

Final state spp collision
(LHC)

Matrix Element
(Theory)

Observable y
(Detector)

b-jet

b-jet

Leptons (e+/-,)

h
hadronic system

Light jets

Missing Energy (Transverse)
or MET

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 4

Matrix Element Method (MEM)

● Studying ttH with the final
state s : 2b, 2q, h, 2 leptons

● Observable y lead to several
possible states s which are of
interest (signal) or not
(background)

● MEM: explore (give a weight)
to all the possible value of x
which lead to the observable y

Final states s

x
a
, x

b
 parton

impulsion fraction
f Parton Density
Fraction (PDF)

ME Transfer
Function (TF)

Momentum
conservation

pp collision
(LHC)

Matrix Element
(Theory)

f(x
a
, Q)

f(x
b
, Q)

TF: detector response

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 5

Final states: backgrounds

ttW: g misidentified as
h

 with W → lepton …
 and others possibilities ...

tt+jets: others jets (gluons) can be
 present in the event (Initial
 State Radiation)

Z

ttZ: Z production (decays in
h
)

 irreducible background

The definition of the final state drives
the S/B

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 6

Permutations
● Problem to associate the b-

jets measures to the (b,b) of
final state, idem for the 2
leptons

● 4 permutations (green
arrows)

● 1 missing q or q in the
reconstruction:

 → 2 more integration
variables (direction)

 (4 x) permutations on all →
possible “light jets”

Integration space
dimension ttH, H→ ττ ttZ, Z→ ττ ttW, W→ lv tt+jets

no missing jet 5 5 6 4

with missing jets 7 7 8 6

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 7

MEM MPI implementation

● Mean CPU time per
event 13 min.

● Parallel version (MPI)
to tune the analysis
method (T. Strebler)

● One run takes several
days on 200-400
physical cores

● PDF: LHAPDF library
● ME computation:

MadGraph5 2.2.1
code generator (C++)

● ROOT: I/O,
Lorentz/geometric
arithmetics

● Integration: VEGAS
algorithm (GSL)

“Daily used” of MEM-MPI on 400-core platform

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 8

OpenCL Implementation

Features:
● Minimize host/devices

communications:
● 1 event is assigned to a

queue/device
● All the integration part

(VEGAS) must be done
inside the device
(including reductions)

● No blocking calls (kernels,
communications) OCL →
events

● Minimize the
synchronization points
(reductions)

Requirements:
Aggregate all the computing powers of the ≠ nodes (MPI + OCL)

Benefit of all device computing power, including CPUs
 several OCL queues in a node→

VEGAS: keep the computation of the chi-square (GSL)

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 9

OCL Kernels

Main kernel (one Vegas iteration) :
● We developed MadGraph extension to

generate the OCL kernel codes
● LHAPDF lib.: Fortran to C-kernel translation
● ROOT tools: Lorentz/geometric arithmetics

 → big kernels (10-20 x 103 lines)

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 10

Data/Work flow

● Config: LHAPDF,
MagGraph (sub)
processes, etc.

● Event: coming from
MPI msg →
device/queue

● IntegrationTypes loop:
asynchronous mode
non-blocking calls
(cl::Events)

host devices→ (Config)
 Loop on Events
 host devices→ (Event)
 Loop on Permutations
 Loop on IntegrationTypes
 host devices→ (VegasState)
 kVegasSetUp()
 Loop on χ2 // for Vegas
 kVegasCompute()
 kVegasFinalize()
 Devices>host(VegasState)

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 11

Benchmarking Platform

Each node

2 x Intel E5-2650: 2 GHz,16 physical cores,
with AVX (4 doubles), 64 Go memory
Interconnection
switch InfiniBand

Devices

NVidia K20, Titans
Xeon Phi
AMD FirePro S9170

AMD FirePro S9170

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 12

Load-balancing in a single node

Same event, 3 permutations,
ttH (signal hypothesis)

● NVidia specificities:
● Buffer must be “pinned” in the

memory not to block the copy
call

● In OCL for NVidia GPUs:

created with CL_MEM_ALLOC_HOST_PTR

allocated enqueueMapBuffer()

Node Intel Xeon + 2 x NVidia K20

Device 1

Device 0

Device 1

Device 0

Node Intel Xeon + 2 x Intel Xeon Phi

The NodeScheduler feeds all the Devices/CPUs
inside one node

CPU Device
(vectorized)

CPUs Device
(vectorized)

1 event: 3 possible permutations → 3 x ttH integrations

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 13

Preliminary Performance
on a single device

C++
-O3

OCL
K20

OCL
X.Phi

OCL
CPUs

OCL
AMD

Time (s) 91.6 8.74 6.90 3.16 -

Speedup 1.00 10.74 13.3 29.0 -

Speedup with
16 MPI proc.

1.00 0.66 0.83 1.81 -

One event, 3 permutations, ttH with 15552 integration
points

We obtained better performance on smaller
kernels (simplified ME, speedup > 50 on K20)

How to get performance analysis of kernels with OCL ?

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 14

Performance analysis tools

VTune analysis on
kernels (w/o OCL):
workload dominated by
the ME computation
(green arrows)

● CodeXL (AMD) works well for simple kernels
(compiler) ...

● NVVP (NVidia) not allowed with OCL ...
● VTune (Intel) with OCL (CPU) … difficult

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 15

CLCUDA/cl.hpp
● LLR development, motivations: for debugging, to preserve our

OCL developments, ...
● Principles : routes <cl.hpp> calls/methods to CUDA calls. Handle

heterogeneous devices
● Change: #include <CL/cl.hpp> by
#include <CLCUDA/cl.hpp> and lcuda

Event

Integral One 2 iteration

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 16

Kernel performance
● Good device occupancy (asynch. mechanisms)
● Host Devices copies are negligible↔
● Kernel performance: ~2 x faster with CL-CUDA

● Kernel performance is limited by the use of 255 registers per
threads

● maxrregcount doesn't improve performance
● VTune targets MadGraph expressions
● Better use of __local (__shared__) space memory to avoid register

spilling and/or to reduce register use by thread

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 17

Conclusion/Perspectives

● CL-CUDA takes advantage of both

CUDA/IntelOCL compilers,
speedup ~ 5.5 for one K20's
node (speedup ~ 90 compared
with a single MPI process)

● Optimization: better use of
data locality (__local)

Next steps:
● Physics: include ttW,

tt+jets in the next weeks
● Production on 10 nodes

x 2 K80s (CC-IN2P3)
● Allows to compute more

accurately integrals
(dim. > 5, 15k points)

● Evaluate on recent
platforms: NVidia Pascal,
Intel KNL (GENCI)

● Evaluate OpenMP 4.x

Node Intel Xeon + 2 x NVidia K20

CPUs Device
(vectorized)

Device 1

Device 0

Time (s)

Time per ev. with 16 MPI processes

1 event

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 18

Backup

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 19

Final States: signal

● Final state chosen to
optimize the “S/B” ratio:

● 2 tops production (studied
channel)

● Higgs boson decaying in 2 τ's:
● one τ decay into hadrons

(hadronic system),
● other τ decays in a lepton

● Top quarks decays:
● One decay in a single

lepton+b(+neutrino)
● One decays in quarks qq + b

● And the 2 leptons with same
sign

Others initial states (uu, dd,
cc, ss) leading to the same
final state (ttH, Hττ)

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

W

W

H

September 26-28, 2016 Perspectives of GPU Computing in Science 20

Integration variables for ttH/Z

τ+¿

¿

● Higgs/Z decay to ττ

 2 integration var.:

● Leptonic top decay
Setting direction (l,l) E→ E→ b

2 integration var.: neutrino's direction (l,l)

● Hadronic top decay
Setting Eq E→ qbar E→ bbar

1 integration var.: Eq variable

|τ⃗+
|,cos (θττ)

ttH, H→ττ: 3 x 11 variables with the measure constrains, the mass invariant
constrains and the momentum conservation 5 integration variables→

Example: mass invariant for (W, q, q
bar

):

mW
2
=EW
2
+⃗PW
2
=(Eq+Eqbar)
2
+(⃗Pq+⃗Pqbar)
2

mW
2
=EW

2
−P⃗W

2
=(Eq+Eqbar)

2
−(P⃗q+ P⃗qbar)

2

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20

