Pushing the Limits of Lattice Monte-Carlo Simulations using GPUs

<u>Jeffrey Kelling,</u> Géza Ódor, Karl-Heinz Heinig, Martin Weigel, Sibylle Gemming

28th September 2016

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Member of the Helmholtz Association

Stochastic Processes in Nature

¹Müller, T., Heinig, K.-H. et al. Appl. Phys. Lett. 85 2373 (2004)

²http://en.wikipedia.org/wiki/File:Rub_al_Khali_002.JPG

³https://www.hzdr.de/db/Cms?pOid=24344&pNid=2707

⁴http://hubblesite.org/newscenter/archive/releases/2007/17/image/a

⁵Ou X., Keller A., Helm M., Fassbender J., Facsko S. Phys. Rev. Lett. 111 016101 (2013)

Self-Organization in Technical Applications

Overview

1 Monte-Carlo Simulations Out-of-Equilibrium

- 2 GPU implementation of Random Sequential UpdatesPerformance: RS vs. SCA
- 3 Correlations: Random Sequential vs. SCA
- 4 Beyond single Bits: Multi-Surface Approach on GPU
 Performance
- 5 Summary and Outlook

Monte-Carlo Simulations Out-of-Equilibrium

1 Monte-Carlo Simulations Out-of-Equilibrium

- 2 GPU implementation of Random Sequential UpdatesPerformance: RS vs. SCA
- 3 Correlations: Random Sequential vs. SCA
- 4 Beyond single Bits: Multi-Surface Approach on GPU
 Performance
- 5 Summary and Outlook

Simulation

simulated physical system evolves in discrete time steps Δt
 more accurate the smaller Δt and the larger the system

Simulation

simulated physical system evolves in discrete time steps Δt

- more accurate the larger the system
- updates are simple, but need to be applied in order
- uncorrelated updates—We need those out-of-equilibrium.

Simulation

• simulated physical system evolves in discrete time steps Δt

- more accurate the larger the system
- updates are simple, but need to be applied in order
- uncorrelated updates—We need those out-of-equilibrium.

Equilibrium vs Non-Equilibrium

Equilibrium Properties: only **final** state relevant

8-states Potts model

 optimal algorithm reaches equilibrium quickly out-of-Equilibrium: **kinetics** of interest

8-states Potts model, $\frac{J}{k_BT} = 5$

 optimal algorithm reproduces physical evolution

Member of the Helmholtz Association

Types Monte-Carlo Dynamics/Algorithms

Dynamics	Equilibrium	Diffusion	Correlations
Random Sequential (RS)	slow	yes	no
Sequential	accelerated	biased	yes
Checkerboard SCA	slow	yes	yes
Cluster	accelerated	no	

- Diffusion kinetics is mandatory.
- Correlations may leave some properties intact.
- SCA is computationally more efficient ...

Member of the Helmholtz Association

. . .

Dynamical Properties

universal properties

- growth exponents (surface roughness, structures)
- autocorrelation and -response
 - fluctuation-dissipation relations
- physical aging
- model-dependent properties
 - corrections
 - dependence on initial conditions
 - shape evolution (fabrication of nanostructures)

KPZ–Equation for Surface Growth

KPZ surface in the steady state

$$d_t h(\mathbf{x}, t) = \underbrace{v}_{\text{mean growth vel.}} + \underbrace{\sigma_2 \nabla^2 h(\mathbf{x}, t)}_{\text{surface tension}} + \underbrace{\lambda \left[\nabla h(\mathbf{x}, t)\right]^2}_{\text{local growth vel.}} + \underbrace{\eta(\mathbf{x}, t)}_{\text{noise}}$$
KPZ stochastic differential equation¹

 $\rightarrow\,$ growth processes, randomly stirred fluids, directed polymers in random media, propagation of flame-fronts ...

¹Kardar, M., Parisi, G., Zhang, Y.-C. Phys. Rev. Lett. 56 889 (1986)

Model—Octahedron-Model for KPZ Growth

2 + 1D roof-top model—octahedron model²

lattice gas with directed dimer diffusion

- \mapsto random deposition of octahedra
 - \Rightarrow site-selection *only* source of noise for deposition prob. p = 1

²Ódor, G., Liedke, B., Heinig, K.-H. *Phys. Rev. E* **79** 021125 (2009) (Plischke, M., Rácz, Z., Liu, D. *Phys. Rev. B* **35** 3485 (1987))

Domain Decomposition

GPU implementation of Random Sequential Updates

1 Monte-Carlo Simulations Out-of-Equilibrium

- 2 GPU implementation of Random Sequential UpdatesPerformance: RS vs. SCA
- 3 Correlations: Random Sequential vs. SCA
- Beyond single Bits: Multi-Surface Approach on GPU
 Performance
- 5 Summary and Outlook

GPU Implementation of RS

- double-tiling at device layer
 ... with random origin
- single-hit delayed-border at block layer

Member of the Helmholtz Association

Bit-Coded KMC on GPUs—Limitations

domain decomposition tiles need to fit into shared memory

- \Rightarrow max. 2 4 states per lattice sites
 - algorithm should better not lead threads to diverge

Performance of Bit-Coded RS vs. SCA

¹Kelling, J., Ódor, G., Gemming, S.: IEEE International Conference on Intelligent Engineering Systems (2016) arXiv:1606.00310 HZDR

Correlations: Random Sequential vs. SCA

1 Monte-Carlo Simulations Out-of-Equilibrium

- 2 GPU implementation of Random Sequential UpdatesPerformance: RS vs. SCA
- 3 Correlations: Random Sequential vs. SCA
- Beyond single Bits: Multi-Surface Approach on GPU
 Performance
- 5 Summary and Outlook

Growth of Surface Roughness

Auto-Correlation of Slopes (Lattice Gas)

Member of the Helmholtz Association

< • •

Auto-Correlation of Slopes (Lattice Gas)

Member of the Helmholtz Association

< • •

Domain Decomposition for RS

DT...

DTrDT

DTrDB

HZDR

Beyond single Bits: Multi-Surface Approach on GPU

- 1 Monte-Carlo Simulations Out-of-Equilibrium
- 2 GPU implementation of Random Sequential UpdatesPerformance: RS vs. SCA
- 3 Correlations: Random Sequential vs. SCA
- 4 Beyond single Bits: Multi-Surface Approach on GPUPerformance
- 5 Summary and Outlook

4 D b

Member of the Helmholtz Association Jeffrey Kelling, Géza Ódor, Karl-Heinz Heinig, Martin Weigel, Sibylle Gemming | FWIO | http://www.hzdr.de

Multi-Surface Coded Simulations on GPU

efficient simulation of independent copies

vector of 32, ..., 128, 256, ... layers depending on application

 \Rightarrow very efficient use of GPUs

(vector processors/data parallelism)

- \Rightarrow high energy efficiency
- \Rightarrow projected good parallel scaling (multi-GPU)

Multi-Surface Coded Simulations on GPU

efficient simulation of independent copies

$\textbf{Trivially parallel} \rightarrow \textbf{Multi-Surface}$

- \mapsto large samples \Rightarrow good statistics
- \mapsto large parameter studies
- \mapsto large sets of initial conditions
- + random site-selection

Multi-Surface Approach for GPUs

Member of the Helmholtz Association

Performance of Lattice Monte-Carlo Codes

Manchen of the Halashalts Associat

Summary and Outlook

1 Monte-Carlo Simulations Out-of-Equilibrium

- 2 GPU implementation of Random Sequential UpdatesPerformance: RS vs. SCA
- 3 Correlations: Random Sequential vs. SCA
- 4 Beyond single Bits: Multi-Surface Approach on GPU
 Performance
- 5 Summary and Outlook

Summary and Outlook

- many physical systems are governed or can be described by stochastic processes
 - computing dynamical properties (e.g. in KPZ)
 - nanostructure evolution, aging
- type of dynamics can matter
- different GPU algorithms to choose from:
 - SCA: good enough for most scaling properties
 - Bit-coded RS: (virtually) uncorrelated noise up to $\sim 16 \times 10^9$ lattice sites on single GPU
 - Multi-Surface: flexible (many states, disorder), still efficient system size limited by GPU memory to do: multi-GPU implementation (straight-forward)

Acknowledgements

- Artur Erbe
- Jörg Schuster
- Peter Zahn
- Henrik Schulz
- Nils Schmeißer
- Michael Bussmann
- my other colleagues
- computing time at ZIH Dresden, NIIF Hunguary, HZDR Computing Center

This work has received funding from the Erasmus+ program via the Leonardo-Büro Sachsen and Coventry University.

J.Kelling@HZDR.de

Thank You.

Page 26/26

Selected Publications

- Kelling, J., Ódor, G.: Extremely large-scale simulation of a Kardar-Parisi-Zhang model using graphics cards *Phys. Rev. E* 84 061150 (2011)
- Kelling, J., Ódor, G., Nagy, M. F., Schulz, H., Heinig, K.-H.: Comparison of different parallel implementations of the 2+1-dimensional KPZ model and the 3-dimensional KMC model *Eur. Phys. J. ST* **210** 175 (2012)
- Ódor, G., Kelling, J., Gemming, S.: Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model *Phys. Rev. E* 89 032146 (2014)
- Kelling, J., Ódor, G., Gemming, S.: Bit-Vectorized GPU Implementation of a Stochastic Cellular Automaton Model for Surface Growth IEEE International Conference on Intelligent Engineering Systems (2016) arXiv:1606.00310
- Kelling, J., Ódor, G., Gemming, S.: Universality of 2+1 dimensional RSOS models *Phys. Rev. E* 94 022107 (2016)

Image Sources

- 1. Müller, T., Heinig, K.-H. et al. Appl. Phys. Lett. 85 2373 (2004) As referenced in RainbowEnergy project.
- 2. http://en.wikipedia.org/wiki/File:Rub_al_Khali_002.JPG
- 3. https://www.hzdr.de/db/Cms?pDid=24344&pNid=2707
- 4. http://hubblesite.org/newscenter/archive/releases/2007/17/image/a
- 5. Ou X., Keller A., Helm M., Fassbender J., Facsko S. Phys. Rev. Lett. 111 016101 (2013)
- 6. Cummins C. et al. Chem. Mater. 27 6091 (2015)
- 7. Cummins C. et al. Nanoscale 7 6712 (2015)
- 8. Fernando Tomás, Zaragoza, Spain
- 9. https://www.hzdr.de/db/Cms?pDid=24344&pNid=2707
- 10. Teshome, B., Facsko, S., Keller, A. Nanoscale 6 1790 (2014)
- 11. Krause, M., Buljan, M. et al. Phys. Rev. B 89 085418 (2014)

< • • •