Multipart SU(N) mode in QCDGPU package for Monte Carlo lattice simulations

V. I. Demchik, N. V. Kolomoyets

Dnepropetrovsk National University Dnepropetrovsk, Ukraine

Perspectives of GPU Computing in Science

September 26, 2016

- 2 QCDGPU in general
- Opdate implementation
- 4 Measured quantities
- **5** Performance results

Lattice approach

Lattice QCD – one of non-perturbative approaches to QCD

 $\begin{array}{l} \mbox{Continuous space-time} \rightarrow \mbox{Discrete lattice} \\ \mbox{Discretized operators} \\ \mbox{Gluonic fields} - \mbox{SU(N) matrices on the lattice links} \end{array}$

$$\begin{split} \langle \mathcal{O} \rangle &= \frac{1}{\mathcal{Z}} \int \mathcal{D}U \, \mathcal{O}[U] e^{-S[U]} \quad \rightarrow \quad \langle \mathcal{O} \rangle \approx \frac{1}{N} \sum_{U_n} \mathcal{O}[U_n] \\ \mathcal{Z} &= \int \mathcal{D}U \, e^{-S[U]}, \quad \int \mathcal{D}U = \prod_{x,\mu} \int dU_\mu(x), \quad U_n \propto e^{-S} \end{split}$$

Lattice Wilson action:

QCDGPU in general

QCDGPU is a multi-GPU open-source package for lattice Monte Carlo simulations of SU(N) gluodynamics at finite temperature and O(N) models.

It is implemented in C/C++/OpenCL and OpenMP (in multipart mode), tested on AMD and NVIDIA GPUs, AMD and Intel CPUs and may run on other OpenCL-compatible devices.OS independent.

It allows investigation of phenomena in external chromomagnetic field (implemented through the "twisted boundary conditions").

https://github.com/vadimdi/QCDGPU

QCDGPU in general

QCDGPU is a multi-GPU open-source package for lattice Monte Carlo simulations of SU(N) gluodynamics at finite temperature and O(N) models.

It is implemented in C/C++/OpenCL and OpenMP (in multipart mode), tested on AMD and NVIDIA GPUs, AMD and Intel CPUs and may run on other OpenCL-compatible devices;OS independent.

It allows investigation of phenomena in external chromomagnetic field (implemented through the "twisted boundary conditions").

https://github.com/vadimdi/QCDGPU

Objectives for the lattice decomposition:

- overcome limited GPU memory
- decrease of computational time

execution on several devices simultaneously

Package structure

V. I. Demchik, N. V. Kolomoyets (DNU)

Multipart SU(N) mode in QCDGPU

Lattice decomposition

read / write

map / unmap /* currently fails on AMD GPUs because of driver bug */ Module for PRNs production is based on PRNGCL library. Generators available:

- RANLUX (with several luxury levels)
- 2 RANMAR
- RANECU
- XOR7, XOR128
- 6 PM
- MRG32k3a

Random seeding for initialization – various PRNG threads are initialized with different seed tables.

PRNG is initialized with with one integer number - RANDSERIES.

At each lattice part, PRNG is initialized with own RANDSERIES.

Single/double precision PRNGs are implemented.

https://github.com/vadimdi/PRNGCL

- plaquette
- Wilson action (also coordinatewise)
- components of tensor of SU(N) electromagnetic field $F^a_{\mu\nu}$

[arXiv:1212.6185v1[hep-lat]]

- Polyakov loop L (also coordinatewise), L^2 , L^4
- Wilson loop

The Wilson loop

Continuous theory:

$$W_{\mathcal{L}} = \mathsf{Tr} \, \left[\mathcal{P} \exp \left(i \oint_{\mathcal{L}} A_{\mu} dx^{\mu}
ight)
ight]$$

Lattice theory:

$$W_{\mathcal{L}} = {\sf Tr} \left[\prod_{(x,\mu) \in \mathcal{L}} U_{\mu}(x)
ight]$$

Wilson loops: planar, non-planar

Usage of the Wilson loop:

- indicates the confinement/deconfinement phases
- string tension
- lattice spacing

Implementation of the Wilson loop

V. I. Demchik, N. V. Kolomoyets (DNU)

Multipart SU(N) mode in QCDGPU

13/17

Performance results

 L^4 lattice $\tau = (\text{time for 1 lattice update} + 1 \text{ measurement of } S_W)/(N_d \cdot L^4)$

"Cold" start, RANLUX PRNG (luxury level 3, single precision). NHIT = 10, reunitarization is used, double precision. 1 lattice part / device; sizes of the parts are chosen to provide better performance.

Ta – AMD Radeon HD7990 (Tahiti) Ti – NVIDIA GeForce GTX TITAN TiX – NVIDIA GeForce GTX TITAN X

[HPC Village] http://openwall.info/wiki/HPC/Village

Multipart SU(N) mode in QCDGPU

Conclusions

Multipart mode in SU(N) part of QCDGPU package is implemented using OpenMP:

several parts may be processed in parallel on several devices as well as sequentially on a single device

2 two multithread variants of exchange of the edge links are implemented:

- through map/unmap: is faster but currently isn't supported by AMD
- through read/write: is some slower but is supported by all GPU manufacturers
- **(a)** measurement of usual and particular (like components of $F_{\mu\nu}$ tensor) quantities is implemented in multipart mode. In particular, measurement of the Wilson loop is implemented
- 4 the $\sim 28.5 33\%$ acceleration is obtained in parallel run on two GPUs and \sim 36 – 43% acceleration on three GPUs for SU(3) model; for SU(2) model these numbers are 19.5 - 24.5% and 22.3 - 29.8%, correspondingly.

Conclusions

Multipart mode in SU(N) part of QCDGPU package is implemented using OpenMP:

several parts may be processed in parallel on several devices as well as sequentially on a single device

2 two multithread variants of exchange of the edge links are implemented:

- through map/unmap: is faster but currently isn't supported by AMD
- through read/write: is some slower but is supported by all GPU manufacturers
- **a** measurement of usual and particular (like components of $F_{\mu\nu}$ tensor) quantities is implemented in multipart mode. In particular, measurement of the Wilson loop is implemented
- 4 the $\sim 28.5 33\%$ acceleration is obtained in parallel run on two GPUs and \sim 36 – 43% acceleration on three GPUs for SU(3) model; for SU(2) model these numbers are 19.5 - 24.5% and 22.3 - 29.8%, correspondingly.

Plans for future:

implementation of fermionic fields

Conclusions

Multipart mode in SU(N) part of QCDGPU package is implemented using OpenMP:

several parts may be processed in parallel on several devices as well as sequentially on a single device

2 two multithread variants of exchange of the edge links are implemented:

- through map/unmap: is faster but currently isn't supported by AMD
- through read/write: is some slower but is supported by all GPU manufacturers
- S measurement of usual and particular (like components of $F_{\mu\nu}$ tensor) quantities is implemented in multipart mode. In particular, measurement of the Wilson loop is implemented
- 4 the $\sim 28.5 33\%$ acceleration is obtained in parallel run on two GPUs and \sim 36 – 43% acceleration on three GPUs for SU(3) model; for SU(2) model these numbers are 19.5 - 24.5% and 22.3 - 29.8%, correspondingly.

Plans for future:

implementation of fermionic fields

Thank you for your attention!