

Scientific computing on ARM-based platforms: evaluation and perspectives

Filippo Mantovani

Senior Researcher at Barcelona Supercomputing Center Technical coordinator of the Mont-Blanc 1 and 2 projects

This project and the research leading to these results has received funding from the European Community's Seventh Framework and H2020 Programmes under grant agreement n° 610402 and 671697.

Mont-Blanc projects in a glance

Vision: to leverage the fast growing market of mobile technology for scientific computation, HPC and non-HPC workload.

Areas of contribution

The Mont-Blanc prototype ecosystem

Prototypes are critical to accelerate software development System software stack + applications

Mont-Blanc prototype

2 Racks
8 BullX chassis
72 Compute blades
1080 Compute cards

2160 CPUs 1080 GPUs 4.3 TB of DRAM 17.2 TB of Flash

Operational since May 2015 @ BSC

Cavium Thunder cluster

- Based on Cavium ThunderX SoC
 - Core: ARMv8 custom implementation
 - 48 cores @ 1.8 GHz per SoC
- 1 cluster node <=> dual socket board
 - 1 board, 2 sockets, 96 cores
 - 128 GB of DDR3 RAM
 - Cache coherency protocol implemented
 - One instance of Linux
- Cluster deployed at BSC facilities
 - 4x dual socket boards (+1 \odot)
 - 384 cores in 2U
 - ~700W peak power consumption*
- * On a reference design board + PASS1 SoC

Jetson TX1 cluster

- Same SoC of NVIDIA Shield console
- 1x NVIDIA Tegra X1
 - 4x Cortex-A57 @ 1.73GHz
 - 1x Cortex-A53 (not usable)
- 1x NVIDIA Maxwell GPU
 - 256 CUDA cores
- 4 GB LPDDR4
- 1GbE Network
- Cluster deployed at BSC facilities
 - 16x NVIDIA Jetson TX1 boards
 - Mont-Blanc software stack available

System software stack for ARM

Tested on several ARM-based platform

- More than 5 years
- More than 4 different ways of measuring the power...
 ...and still no standards!

Roma, 28 Sep 2016

2

MB-proto: Power monitor – HW infrastructure

Credits: Axel Auweter, Daniele Tafani (LRZ)

MB-proto: Power monitor – HW / SW interface

- Field Programmable Gate Array (FPGA)
 - Collects power consumption data from all 15 power measurement / sample interval: 70ms
- Board Management Controller (BMC)
 - Collects 1s averaged data from FPGA
 - Stores measurement samples in FIFO
- Mont-Blanc Pusher
 - Collects measurement data from multiple BMCs using custom IPMI commands
 - Forwards data using MQTT protocol through Collect Agent into key-value store

Credits: Axel Auweter, Daniele Tafani (LRZ)

On Mont-Blanc prototype

Alya RED on the Mont-Blanc prototype

Applications - weak scaling

Applications - strong scaling

Experimental setup with external power monitor

Linux Kernel support for the ThunderX PMU

INFO: On ARM CPU, hardware performance counters are handled by a component called Performance Monitor Unit (PMU), part of the SoC:

- Access to PMU is SoC-dependent
- In order to access the PMU
 - Device Tree must include PMU definition
 - Linux Kernel must implement a way to access PMU

In our case

- Device Tree does not include PMU definition Developed the PAPI extension for
- PMU access not supported by the kernel

Result

- Hardware counters can be accessed with the "perf" command
- Patch available to the rest of the world

accessing hardware counters via PAPI

(including preset and native events)

Jetson TX1: "old school" hacking...

- Voltage monitor on-board component
 - Texas Instruments INA3221
 - Connected via I2C
 - No support provided by NVIDIA
 - Hand-written support...
- Measurements validated with external setup

• So we are now able to get power traces on Jetson TX1!

DGEMM with CUDA

• Test of a simple CUDA code performing a DGEMM

 Basic time to solution / energy to solution study with default governor configurations

MILCmk power analysis (preliminary)

- 7 representative microkernels for the MIMD Lattice Computation (MILC) collaboration code
- CORAL benchmark, C code, OpenMP, double precision
- Study of the computational features using hw counters

MONT-BL/NC

Next steps

Short term:

- Power profile complex CUDA codes
- Deeper understanding of governors

Ideally targeting three levels of power information:

- From the application
 - Access to an energy register, PAPI style
 - Possibility of easily powering on-off cores
 - Change of frequency
- From the runtime
 - Direct access to the power registers
 - Possibility of easily powering on-off cores (without kernel support)
- From the outside
 - Gather power data of larger systems "a la Mont-Blanc"
 - Power aware job scheduling

Conclusions

- Highlight of Mont-Blanc activities have been presented
 - Even with low-end hardware components it is possible to achieve decent performance in parallel computation
 - Main-line of Mont-Blanc 3 activity is targeting high-end server market
 - Still researching in cost-efficient platforms
- 3 ARM-based platforms for scientific computing have been introduced
 - With focus on power monitoring
 - There is still allong way for real power aware programming...

