

GPU BASED MODELING PIPELINE TO EXTRACT BRAIN CELL MORPHOLOGY FROM IN VIVO DIFFUSION-WEIGHTED MR SPECTROSCOPY DATA

<u>**Palombo M.**</u>, Ligneul C., Najac C., Le Douce J., Flament J., Escartine C., Hantraye P., Brouillet E., Bonvento G., Valette J.

CEA/DSV/I²BM, MIRCEN, FONTENAY-AUX-ROSES, FRANCE

Perspectives of GPU computing in Science September 26-28, 2016

OUTLINE

 \succ Introduction and Rationale;

Application 1: Brain cell's morphology extraction;

Application 2: finer cell's morphology characterization

Future Perspectives: applications to pathology

MOLECULAR DIFFUSION MEASURED BY DIFFUSION-WEIGHTED MR

Possibility to investigate the apparent diffusion of endogenous molecules

<u>Non invasive</u>

MOLECULAR DIFFUSION MEASURED BY DIFFUSION-WEIGHTED MR

Possibility to investigate the apparent diffusion of endogenous molecules

MOLECULAR DIFFUSION MEASURED BY DIFFUSION-WEIGHTED MR

Possibility to investigate the apparent diffusion of endogenous molecules

INTRODUCTION

MOLECULAR DIFFUSION MEASURED BY DIFFUSION-WEIGHTED MR

Possibility to investigate the apparent diffusion of endogenous molecules

Diffusion-weighted MRI: water

Ischemic stroke Fiber tracking

High sensitivity

<u>**But</u>**: Diffusion of water = <u>**no specific**</u> (extra + intracellular space, crosses membranes)</u>

Brain intracellular metabolites are primarily localized and diffuse in cell fibers rather than in cell bodies¹⁻⁴

(1) Marchadour C et al. Journal of Cerebral Blood Flow & Metabolism (2012) **32 (12)**: 2153-2160;

(2) Najac C et al. Neuroimage (2014) 90: 374-380;

(3) Najac C et al. Brain Structure and Function (2014) **221 (3)**: 1245-1254

(4) Ligneul C et al. Magnetic Resonance in Medicine (2016): DOI: 10.1002/mrm.26217

→ Interpretation and modeling of metabolite diffusion primarily based on cell geometry

Diffusion Weighted NMR

$$\rightarrow \mathbf{b} = \mathbf{q}^2 \mathbf{t}_{\mathbf{d}} \approx \mathbf{g}^2 \mathbf{t}_{\mathbf{d}}$$

Diffusion Weighted NMR

 \rightarrow b = q² t_d \approx g² t_d

 \rightarrow S(b) \approx exp[-b ADC(t_d)]; ADC=<r(t_d)²>/d t_d

$$d\phi_{j}(t) = \gamma g(t) \cdot x_{j}(t) \Delta t$$

$$\phi_{j} = \sum_{t=0}^{t_{seq}} d\phi_{j}(t)$$

$$ADC = -\frac{\ln(S/S_{0})}{b}$$

$$S = \left| \frac{1}{N} \sum_{j=1}^{N} e^{i\phi_{j}} \right|$$

$$b = \gamma^{2} \int^{eq} dt \left[\int \tilde{g}(t') dt' \right]^{2}$$

LONG DIFFUSION TIME EXPERIMENTS AND MODELING

METHODS

METHODS SIMULATION-FITTING PIPELINE

N particles = 10^3 ; N time step = 10^4 ; System replication = 50; Fitting iteration = 200 x 3; <u>Total iterations = ~ 10^{11} </u>

	1	2	3	4
Fitting free diffusion data	~ 17.5 minute	~ 5 minute	~ 3 minute	~ 0.1 minute
Fitting restricted diffusion data	~ 40 minute	~ 12 minute	~ 6 minute	~ 0.8 minute

FITTING STABILITY TO EXPERIMENTAL NOISE

RESULTS

250 Monte-Carlo trials Gaussian noise (15% relative SD) added to

a reference simulated ADC(t_d) curve

Simulation-Fitting pipeline

250 sets of fitted morphological parameters

\$ Palombo M. et al. Proceedings of the 23rd ISMRM Annual Meeting 2015; Abstract # 2982

FITTING STABILITY TO EXPERIMENTAL NOISE

RESULTS

→ Fitting pipeline very stable (Bias and CV < 5%) with respect to experimental noise

Palombo M. et al. PNAS (2016); 113(24), 6671-6676

LONG DIFFUSION TIME EXPERIMENTS AND MODELING

RESULTS

RESULTS

RECONSTRUCTED ASTROCYTES AND COMPARISON WITH HISTOLOGY

Palombo M. et al. PNAS (2016); **113**(24), 6671-6676

A) Zoom and binarization of bitmap images

→ Reasonable values for cell morphology parameters in both mouse and macaque brain

→ Good match between Sholl based metrics measured by real and virtual histology

Basic cell-graph model

- 1) Presence of very long processes/axons;
- 2) Presence of leaflets/spines;
- 3) Presence of vericosities.

Basic cell-graph model

Basic cell-graph model

▶ It affects the estimation of D_{free} only, inducing overestimation of it.

Basic cell-graph model

- 1) Presence of very long processes/axons;
- 2) Presence of leaflets/spines;
- 3) Presence of varicosities.

Basic cell-graph model

Real Simulated

1) Presence of very long processes/axons;

2) Presence of leaflets/spines;

3) Presence of varicosities.

n=12

n=40

High b-value DW-MRS signal simulations from realistic dendritic geometries

High b-value DW-MRS signal simulations from realistic dendritic geometries

High b-value DW-MRS signal simulations from realistic dendritic geometries

Spines/leaflets density

$$\frac{D_{\text{intra}}^{eff}}{D_0} = (2.4\phi^{0.35})^{-1.3} + [1 - (2.4\phi^{0.35})^{-1.3}]e^{-\phi}$$

$$r^{eff} = r_0 + 1.7(1 - e^{-0.6\phi})$$

Spines/leaflets length

$$\frac{D_{\text{intra}}^{\text{eff}}}{D_0} = [1.1(0.85l)^{0.065}]^{-1.4} + \left[1 - [1.1(0.85l)^{0.065}]^{-1.4}\right] e^{-0.85l}$$

$$r^{eff} = r_0 + 1.2(1 - e^{-0.25l})$$

Varicosities size

$$\frac{D_{\text{int}ra}^{eff}}{D_0} = e^{-\frac{A}{1-A}}$$

 $r^{eff} = r_0 e^{0.86\frac{A}{1-A}}$

| PAGE 26 Palombo M. et al. *Submitted (2016)*

Metabolite	D _{intra} ^{cyl} (μm²/ms)	a (µm)
NAA	0.339	0.62
Glutamate	0.440	0.90
Creatine	0.375	1.59
Taurine	0.436	1.30
Choline	0.308	1.33
Myo-Inositol	0.325	1.67

Neurons (D₀ from ultra short t_d)

NAA: $\Phi = 0.19$ spine/ μ m; $R_0 = 0.45 \mu$ m; $I = 0.95 \mu$ m ($D_0 = 0.454 \mu$ m²/ms) Glu: $\Phi = 0.23$ spine/ μ m; $R_0 = 0.52 \mu$ m; $I = 1.05 \mu$ m ($D_0 = 0.476 \mu$ m²/ms)

From histology: $\Phi < 0.50$ spine/ μ m; R₀ ~ 0.50 μ m; I ~ 1.00 μ m

Astrocytes (D₀ from ultra short t_d)

tCho: $\Phi = 0.70$ leaflets/µm; $R_0 = 0.75$ µm; I = 2.65 µm ($D_0 = 0.370$ µm²/ms) Ins: $\Phi = 0.73$ leaflets/µm; $R_0 = 1.07$ µm; I = 2.79 µm ($D_0 = 0.393$ µm²/ms)

From histology: $\Phi \sim 1.00$ leaflets/µm; R₀ ~ 1.00 µm; I > 2.50 µm

Merging structural information from high b-values / long t_d

12 µm

Astrocyte and leaflets

14 µm

Virtual Astrocyte

Real Astrocyte

In CEA/MIRCen, Paris (France)

07

Injury and inflammation → *Astrocytes reactivity*

Astrocyte

'Reactive' Astrocyte

In UCL, London (UK)

Simulate the whole brain \rightarrow Cells growth and context aware interactions

Vanherpe L., et al. PRE (2016); 94, 023315

Torben-Nielsen B., et al. Front. NeuroAnatomy (2014); **8**, 92

THANK YOU ALL FOR YOUR KIND ATTENTION!!!

EFC *INCELL* project (2013-2018)

ACKNOWLEDGEMENTS

THANK YOU ALL FOR YOUR KIND ATTENTION!!!

Contacts:

mrc.palombo@gmail.com

Commissariat à l'énergie atomique et aux énergies alternatives MIRCen | 92260 Fontenay-aux-Roses T. +33 (0)1 46 54 70 80 | F. +33 (0)1 46 54 70 80

_

Direction Département Service

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

RESULTS EFFECTS OF MORPHOMETRIC PARAMETERS ON ADC TIME DEPENDENCE

Similar impact was found for $N_{\mbox{\scriptsize branch}}$ and $\mbox{\scriptsize SD}_{\mbox{\scriptsize Nbranch}}$

RESULTS EFFECTS OF MORPHOMETRIC PARAMETERS ON ADC TIME DEPENDENCE

 $(N_{branch} \times L_{segment})$, but specifically depends on $L_{segment}$ and N_{branch} .

Strong g (short t_d)

× Segments length

imes Number of consecutive bifurcation

→ Segments Diameter

HIGH G EXPERIMENTS AND MODELING

RESULTS

HIGH G EXPERIMENTS AND MODELING

RESULTS

HIGH G EXPERIMENTS AND MODELING

RESULTS

→ Randomly oriented cylinders model <u>well describes metabolites' diffusion at high b</u> <u>values</u>

→ Randomly oriented cylinders model allows <u>estimation of reasonable values</u> for <u>cell</u> <u>processes diameter</u>

Metabolite	D _{intra} ^{cyl} (μm²/ms)	a (µm)
NAA	0.339	0.00
Glutamate	0.440	0.90
Creatine	0.375	1.59
Taurine	0.436	1.30
Choline	0.308	1.33
Myo-Inositol	0.325	1.67

HIGH G EXPERIMENTS AND MODELING RESULTS

→ Modified randomly oriented cylinders model <u>well describes NAA diffusion at high b</u> <u>values</u>, allowing <u>estimation of reasonable values</u> for <u>cell processes diameter and small</u> <u>compartments size</u>.

