



# Portable generic applications for GPUs and multi-core processors: An analysis of possible speedup, maintainability and verification at

the example of track reconstruction for ALICE at LHC

**David Rohr** 

Frankfurt Institute for Advanced Studies

Perspectives of GPU computing in Science 2106

Rome, 28.9.2016



#### Why GPUs?



**Transistors** become smaller and smaller. / Performance [GFlop/s] **CPU clocks have** stagnated! **Higher Performance** through parallelism. **GPUs have higher** 

peak performance than traditional processors.



Year



#### Why GPUs?





Year



#### Why GPUs?



**Transistors** become smaller and smaller.

**CPU clocks have** stagnated!

**Higher Performance** through parallelism.

**GPUs have higher** peak performance than traditional processors.



### **ALICE at the LHC**



The Large Hadron Collider (LHC) at CERN is today's most powerful particle accelerator colliding protons and lead ions.

ACORDE

EMCAL

TRD

ZDC

TOF

PHOS

- **ALICE** is one of the four major experiments, designed primarily for heavy ion studies.
- The High Level trigger (HLT) is an online compute HMPID farm for real-time data PMD/V0 reconstruction for ALICE.
- Most compute-intensive task is track reconstruction.



#### **Trajectories found in event**

There is plenty of parallelism, So let's try GPUs.



### Summary (current ALICE Tracking)



- Tracking on GPU ca 3 times faster than full processor with all cores.
  - But how to define speedup? See later!
- GPU and CPU results consistent and reproducible.
- GPU Tracker runs on CUDA, OpenCL, OpenMP one common shared source code.
- Now: 180 compute nodes with GPUs in the HLT as of 2015.
- First deployment: 2010 64 GPUs in LHC Run 1.
- Since 2012 in 24/7 operation, no problems yet.
- Cost savings compared to an approach with traditional CPUs:
  - About 500.000 US dollar during ALICE Run I.
  - Above 1.000.000 US dollar during Run II.
    - Mandatory for future experiments, e.g.. CBM (FAIR, GSI) with >1TB/s data rate.



# **Requirements for CPU code**



- Portability
  - Not all CERN GRID tier centers have GPUs (most do not!).
  - GPU model and vendor may vary.
  - CPU main / sole compute device in the GRID, GPUs used for real-time reconstruction
- We want the CPU code as reference!
  - Debugging should be possible on the CPU.
  - GPU results should match as closely as possible but cannot be identical.
- To reduce maintenance effort, a single source code is mandatory!



- CPU and GPU tracker (in CUDA and OpenCL) share common source files.
- Specialist wrappers for CPU and GPU exist, that include these common files.

common.cpp: \_\_DECL FitTrack(int n) { cpu\_wrapper.cpp:
#define \_\_DECL void
#include ``common.cpp``

```
void FitTracks() {
  for (int i = 0;i < nTr;i++) {
    FitTrack(n);
  }</pre>
```

cuda\_wrapper.cpp and opencl\_wrapper:
#define \_\_DECL \_\_device void
#include ``common.cpp``

```
__global void FitTracksGPU() {
FitTrack(threadIdx.x);
```

```
void FitTracks() {
    FitTracksGPU<<<nTr>>>();
```

#### $\rightarrow$ Same source code for CPU and GPU version

- The macros are used for API-specific keywords only.
- The fraction of common source code is above 90%.

# **Requirements for CPU code**



- The ALICE reconstruction and simulation framework AliRoot is based on C++.
  - Track reconstruction must be C++.
  - OpenCL and C++ is a complicated story, which leaves (left) NVIDIA CUDA as sole alternative in the beginning.
- Since last year, we use OpenCL with AMD C++ kernel extensions on AMD GPUs.
- CUDA still supported through common source code.
- Unfortunately, this makes OpenCL single-vendor too only AMD supports it.
- Performance comparison inconvenient, because we cannut use the same API.
- We are really hoping for C++ extensions in OpenCL 2.0.
- We support:
  - AMD GPUs via OpenCL and C++ extensions
  - NVIDIA GPUs via CUDA
  - CPUs (via OpenMP if needed)
  - Prototype for SSE / AVX / Xeon Phi via Vector library (Vc)

Common source code

#### Which source code to have common?



- In any case, the host code should be identical.
  - Complicated long kernels codes could be shared.
  - Specialized hand-tuned short (assembler-like) kernels should be created for every device.
    - Also, special versions of "hot-spot" device functions can be used by a common kernel.
- The host code should have a generic (or abstract) interface to use.
- We use templates or virtual classes here (only for the "management" code).
  - One derived class of virtual base class for every supported API.
  - A virtual function call to initiate a DMA transfer / start a kernel is **no overhead**!
  - No virtual functions in performance critical device code.
    - Anyway: limited availability for virtual functions in APIs (CUDA does it for some time now).
- If a class that is used on the GPU shall have virtual functions (for management on the host):
  - We have a non-virtual base-class used on the GPU (do not want virtual calls there anyway).
  - Virtual functions only added on derived class used on the host (data layout of base class remains).
  - This works even when the GPU API does not have virtual features.



• Do not overdo it!

Which API shall we use for our application?



Do not overdo it!

Which API shall we use for our application?

Well, I just checked. There are 10 APIs. Each has pros and cons.



Do not overdo it!

Which API shall we use for our application?

Well, I just checked. There are 10 APIs. Each has pros and cons.

#### So which do we use?



Do not overdo it!

Which API shall we use for our application?

Well, I just checked. There are 10 APIs. Each has pros and cons.

#### So which do we use?

Hey, I got an idea. Let's create a new general API that abstracts all others



Do not overdo it!

Which API shall we use for our application?

#### Use one that fits now!

- This is a rapidly changing field.
- Keep your code generic so you can switch.
- C and (restricted) C++ code can be executed everywhere, CUDA / OpenCL are not so different.
- Do not use fancy features where not needed.
- Try to start to have a common code for the CPU and for your API of choice!

## **Consistency of Tracking Results**



Even though the source code is identical, GPU and CPU yield different results. We identified three causes:

- Cluster to track assignment
- Variances during track merging
- Non-associative floating point arithmetic



### **Consistency of Tracking Results**



- Problem: Cluster to track assignment was depending on the order of the tracks.
  - Each cluster was assigned to the longest possible track. Out of two tracks of the same length, the first one was chosen.
  - Concurrent GPU tracking processes the tracks in an undefined order.
- Solution: We need a continuous (floating point) measure of the track quality.
  - Two 32-bit floats can still be identical, but that is unlikely.

Similar problem in track merging, which depended on track order.

FIAS Frankfurt Institute for Advanced Studies

### **Consistency of Tracking Results**



- Problem: Different compilers perform the arithmetic in different order (also on the CPU).
- Solution: Cannot be fixed, but...
  - Slight variations during the extrapolations do not matter as long as the clusters stay the same.
  - Inconsistent clusters: 0,00024%

#### Now, perfect match of CPU and GPU results in plots...

...But not binarily.



FIAS Frankfurt Institute for Advanced Studies

#### **Generic Performance Optimization**



- Not all processors are the same...
  - how to optimize for all of them?
  - A code tailored for GPUs is not necessarily optimal for CPUs.
  - Many features can be parameterized.

Shared Memory Size



#### Algorithm internal parameters.

#### **Generic Performance Optimization**



- All new features we added can be switched off.
- Parameters can be changed easily mostly at compile time.
  - Via templates
  - or preprocessor directives.
- Through runtime-compilation (CUDA / OpenCL), one can still easily run parameter scans.
  - Essentially, it took us three iterations to add / parameterize features:
  - NVIDIA GTX 285 (First version)
  - NVIDIA GTX 480 (New GPU Model)
  - AMD S9000 (OpenCL / Other Vendor / New GPU)
- For new GPUs, we could find good parameters via parameter range scan.
- For instance, 140 ms  $\rightarrow$  50 ms switching from Keppler to Maxwell.
- Of course, we do not really know whether this is optimal.

#### **Generic Performance Optimization**



- What about special GPU features: e.g. shared memory?
  - Does not really matter.
  - Every memory on the CPU is "shared".
  - Use (thread-local) normal memory for reductions etc.
  - Activate / deactivate explicit shared memory caches via pointer access.
- Single or double precision?
  - Only single or mixed, usually you don't need double everywhere.
- The biggest problem we face (with low-level APIs):
  - SIMD v.s. SIMT
  - In fact, the Hardware is the same:
    - One instruction decoder.
    - Vector or vector-like processing.
    - Essentially, a GPU multiprocessor is a core.
    - A warp is a vector-processing unit.
  - But the programming is not the same.

Xeon CPU

NVIDIA Kepler



#### SIMD v.s. SIMT



- How to program for SIMD and SIMT, or how to support SSE/AVX/Xeon Phi and GPUs?
  - Obviously no intrinsics.
  - Automatic parallelization / vectorization does not work (in a general scope).
  - Could use OpenCL (SIMD processors can run SIMT code using Masks, Gathers, Scatters).
     (Essentially, SIMT is SIMT + automatic masks, gathers, scatters.)
    - No good experience with OpenCL on Xeon Phi KNC.
    - No OpenCL (yet?) for Xeon Phi KNL.
    - OpenCL utilization of vector units of CPUs (SSE / AVX) suboptimal.
    - SSE / AVX lack SIMT instructions getting better with AVX512 moving towards Xeon Phi ISA.
    - CPUs usually faster with OpenMP (+ vectorization) than with OpenCL.
    - Could use vector libraries (e.g. Vc) on GPU.
      - Difficult to implement (in C++).
      - Vc C++ expects one thread, but SIMT "simulates" multiple threads.

#### SIMD v.s. SIMT



- This question is the reason why we currently have
  - A common tracker for CUDA / OpenCL / OpenMP.
  - A forked prototype for Vc supporting AVX / Xeon Phi.
- Could use both OpenCL / CUDA and Vc vector library togeter.
  - For the GPU code, we use the scalar library version.
  - Then, Vc library could vectorize for AVX / Xeon Phi, SIMT would "vectorize" for GPUs.
  - Vectorization should be efficient, because data structure guidelines are the same (SoA v.s. AoS).
  - $\rightarrow$  More maintenance effort.
  - → Possible compatibility issues.
  - $\rightarrow$  Ugly!
- No good solution yet.

## **Optimizations (Performance)**



- Splitting of problems in parts, for us this means...
   separation of event in sectors enables the use of a Pipeline:
   Tracking on GPU, pre-/postprocessing on CPU, and data transfer run in parallel.
   DMA
   GPU
   CPU 1
   GPU
   CPU 2
   CPU 3
   Zeit
   Routine: Initialization Neighbor Finding Tracklet Construction Tracklet Selection Tracklet Output
- This is a very general concept which could apply to all GPU applications.
- (Not needed when data stays on the GPU all the time).
- Splitting the workload usually simplifies processing a part on the CPU.
- However, in most cases we don't have a single workload.
- We offload what runs efficiently on the GPU, and use the CPU for other tasks.
  - One can dedicate one core for scheduling with fast response.

# **Other Applications: Linpack**



Linpack iteratively factorizes a dense A - Matrix Already Processed system of linear equations. To Be Processed Panel Heavy use of linear algebra (BLAS) U Trailing Matrix library. - Matrix U - Matrix Most time consuming step is matrix-C - Matrix matrix multiplication (DGEMM). DGEMM is ideally suited for GPUs. CPU 0 CPU 1 A similar asynchronous pipeline is CPU 2 CPU 3-7 used, in this case with multiple DMA GPU 0 GPUs. GPU 1 CPU 0 CPII 1 CPU 2 Few special, non-common linear CPU 3-7 DMA algebra kernels for each GPU. GPU 0 GPU 1 Only host code shared in this case, Time which is the majority of the code. Tasks: Divide A Divide B Transfer A Transfer B Fetch C Merge DGEMM Kernel BLAS Phase 1-3





- What speedup to we get / can we expect from GPUs.
  - How to measure it.
- Stating only the time to solution might sound nice, but does not tell the whole store.

# **Electron Microscopy Analysis**





FIAS Frankfurt Institute for Advanced Studies

## **Electron Microscopy Analysis**

Different approaches to this:



FIAS Frankfurt Institute

for Advanced Studies





- What speedup to we get / can we expect from GPUs.
  - How to measure it.
- Total speedup of optimized BioEM (electron microscopy) program using GPU: 1000x – 13000x!!!





- What speedup to we get / can we expect from GPUs.
  - How to measure it.
- Total speedup of optimized BioEM (electron microscopy) program using GPU: 1000x – 13000x!!!
  - Is that apples compared to apples?
  - Which CPU, which GPU?
  - How many cores were used?
  - Was vectorization used?
  - Is it actually the same algorithm?
  - Is the result the same?

### **Electron Microscopy Analysis**

• Performance evolution over time: The plot shows execution time, speedup compared to previous version, and total speedup.



FIAS Frankfurt Institute for Advanced Studies





- What speedup to we get / can we expect from GPUs.
  - How to measure it.





- What speedup to we get / can we expect from GPUs.
  - How to measure it.
- Full GPU v.s. Full CPU (with all cores)
  - I like this one, but how many cores?







- What speedup to we get / can we expect from GPUs.
  - How to measure it.
- Full GPU v.s. Full CPU (with all cores)
  - I like this one, but how many cores?
- GPU v.s. one CPU core (and state it is one core)
- Can be misleading, but better.
- But how does the CPU scale?





- What speedup to we get / can we expect from GPUs.
  - How to measure it.
- Full GPU v.s. Full CPU (with all cores)
  - I like this one, but how many cores?
- GPU v.s. one CPU core (and state it is one core)
- Can be misleading, but better.
- But how does the CPU scale?
- Full GPU v.s. Full CPU / number of cores
  - Even better, but
    - Scaling might depend on number of cores.
    - Which GPU after all?
    - Which CPU model, which frequency?



# **Comparing CPU / GPU Performance**



- The compute performance alone is no reasonable metric!
  - The GPU is the faster chip by construction.
  - The are many claims showing a 30x 1000x speedup on GPU!
    - → CPU code should be optimized before the comparison!



The advantage is of the second form is: achieved performance and theoretical peak performance can be measured in different units.



# **Comparing CPU / GPU Performance**



 Overview of speedup in several applications:

|   | Benchmark | Туре    | Hardware                                | Performance                          | % of peak | Speedup | ε [%] |
|---|-----------|---------|-----------------------------------------|--------------------------------------|-----------|---------|-------|
|   | (old) HLT | Single  | Nehalem 4C $3\mathrm{GHz}$              | $1122\mathrm{ms}$                    |           |         |       |
|   | Tracker   |         | GTX285 + CPU                            | $312\mathrm{ms}$                     |           | 3.60    | 53    |
|   | (new) HLT | Single  | $2 \times Magny-Cours 2.2  GHz$         | $495\mathrm{ms}$                     |           |         |       |
|   | Tracker   |         | GTX580 + CPU                            | $155\mathrm{ms}$                     |           | 3.19    | 85    |
|   | Track     | Single  | Westmere 6C $4\mathrm{GHz}$             | $65\mathrm{ms}$                      |           |         |       |
|   | Merger    |         | GTX580 + CPU                            | $60\mathrm{ms}$                      |           | 1.10    | 13    |
|   | DGEMM     | Double  | $2 \times Magny$ -Cours $2.1  GHz$      | $180\mathrm{GFlop}/\mathrm{s}$       | 89.3      |         |       |
|   | (Kernel)  |         | 5870                                    | $494\mathrm{GFlop/s}$                | 90.8      | 2.74    | 102   |
|   |           |         | 6970                                    | $624  \mathrm{GFlop/s}$              | 92.3      | 3.47    | 103   |
|   |           |         | 7970                                    | $805  \mathrm{GFlop/s}$              | 84.4      | 4.47    | 95    |
|   | DGEMM     | Double  | $2 \times Magny$ -Cours $2.1  GHz$      | $180  \mathrm{GFlop/s}$              | 89.3      |         |       |
|   | (System)  |         | 5870 + CPU                              | $623.5\mathrm{GFlop/s}$              | 83.6      | 3.46    | 94    |
|   |           |         | 3×5870 + CPU                            | $1435  \mathrm{GFlop}/\mathrm{s}$    | 78.3      | 7.98    | 87    |
| - |           |         | 2×6990                                  | $2292  \mathrm{GFlop}/_{\mathrm{s}}$ | 89.9      | 12.73   | 104   |
|   |           |         | 2×S10000                                | $2923  \mathrm{GFlop/s}$             | 79.8      | 16.24   | 89    |
|   | One-Node  | Double  | $2 \times Magny-Cours 2.1  GHz$         | $174.6\mathrm{GFlop/s}$              | 86.6      |         |       |
|   | HPL       |         | 5870 + CPU                              | $563.2\mathrm{GFlop/s}$              | 75.5      | 3.23    | 87    |
|   |           |         | 3×5870 + CPU                            | $1114 \mathrm{GFlop}/_{\mathrm{s}}$  | 60.7      | 6.38    | 70    |
|   |           |         | $2 \times 6990 + CPU$                   | $2007  \mathrm{GFlop/s}$             | 72.4      | 11.49   | 84    |
|   |           |         | $2 \times S10000 + CPU$                 | $2679\mathrm{GFlop/s}$               | 73.1      | 15.34   | 84    |
|   | Erasure   | 32-bit  | Westmere $6 \cdot 3.8 \mathrm{GHz}$     | 14.3  GB/s                           | 74.7      |         |       |
|   | Codes     | logical | GTX580                                  | 72.5  GB/s                           | 75.3      | 5.32    | 102   |
|   | (small n) |         | 6970                                    | 51.1  GB/s                           | 58.0      | 4.10    | 78    |
|   |           |         | Virtex 6 LX240 FPGA                     | $2187.0  \mathrm{GB/s}$              |           | 152.94  |       |
|   | Erasure   | 32-bit  | Sandy Bridge $1 \cdot 3.7 \mathrm{GHz}$ | $251.0 \mathrm{GAOp/s}$              |           |         |       |
|   | Codes     | logical | Westmere $6 \cdot 3.8 \mathrm{GHz}$     | $807.0 \mathrm{GAOp/s}$              |           |         |       |
|   | (large n) |         | GTX580                                  | $908.4 \mathrm{GAOp/s}$              |           | 1.13    | 19    |
|   |           |         | 6970                                    | $1024 \operatorname{GAOp/s}$         |           | 1.27    | 26    |



# **Comparing CPU / GPU Performance**



- The compute performance alone is no reasonable metric!
  - The GPU is the faster chip by construction
- We consider the following:

$$\mathcal{E} = \frac{\text{Efficiency on GPU}}{\text{Efficiency on CPU}} = \frac{(a_g/p_g)}{(a_c/p_c)}$$

$$=rac{a_g/a_c}{p_g/p_c}.$$

- Most of our applications reach about 70% or more in this metric.
- There are exclusions:
  - PCI Express can limit the performance (track merger, encoding with small n / k).
  - CPU Compilers are better and allow more flexible core (JIT-compiled encoding).
  - CPU caches can better hide memory latencies (Electron Microscopy).





- Compare specifications to requirements first, is the GPU suited for your program (PCIe limit etc.)
- Write generic source code, do not maintain multiple code bases!
  - Simple code is easily portable. Use the when needed, not for fun.
- Write fast code where it is critical, write "nice" code otherwise.
  - Parameterize optimization features, to easily tune them for new hardware  $\rightarrow$  portability.
  - Split problem in parts. Enables load balancing and pipelined processing.
  - Tell us exactly what you compare for the speedup.

**Suggestions** 

- Results should include how it scales (to large GPUs / multiple cores).
- Relative performance numbers can help to judge the efficiency (relative speedup often ca. 70%).
- Optimizing "old" applications usually yields a great speedup on the CPU, too.
- Optimization strategies are not too different, the GPU and CPU architectures converge.
- (Good code, optimized fort both CPU and GPU, often runs around 3x to 4x faster on GPU.)
- Compiler optimizations will give you inconsistent floating point results on CPU.
  - Do not expect this to be better on the GPU. Try to keep the algorithm consistent.
- Use single precision where possible, double where needed, mixed is OK.