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The Large Hadron Collider (LHC) at
CERN is today‘s most powerful
particle accelerator colliding protons
and lead ions.

ALICE is one of the four

major experiments,

designed primarily for

heavy ion studies. _—

The High Level trigger b Fier
(HLT) is an online compute :
farm for real-time data PMD/VO
reconstruction for ALICE.

Most compute-intensive
task is track reconstruction.
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Tracking
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Trajectories found in event

There is plenty of parallelism,
So let's try GPUs.
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« Tracking on GPU ca 3 times faster than full processor with all cores.
*  But how to define speedup? See later!

« GPU and CPU results consistent and reproducible.
« GPU Tracker runs on CUDA, OpenCL, OpenMP —one common shared source code.

* Now: 180 compute nodes with GPUs in the HLT as of 2015.
* First deployment: 2010 — 64 GPUs in LHC Run 1.
* Since 2012 in 24/7 operation, no problems yet.

«  Cost savings compared to an approach with traditional CPUs:
* About 500.000 US dollar during ALICE Run I.
» Above 1.000.000 US dollar during Run II.
« Mandatory for future experiments, e.g.. CBM (FAIR, GSI) with >1TB/s data rate.




b’
Requirements for CEU ‘tode BP9

N

« Portability

Not all CERN GRID tier centers have GPUs (most do not!).

GPU model and vendor may vary.

CPU main / sole compute device in the GRID, GPUs used for real-time reconstruction

«  We want the CPU code as reference!
Debugging should be possible on the CPU.
GPU results should match as closely as possible — but cannot be identical.

«  To reduce maintenance effort, a single source code is mandatory!

28.09.2016 11
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« CPU and GPU tracker (in CUDA and OpenCL) share common source files.
« Specialist wrappers for CPU and GPU exist, that include these common files.

common.cpp: Cpu_wrapper.cpp: cuda_wrapper.cpp and opencl_wrapper:
__ DECL FitTrack(int n) { #define _ DECL void #define _ DECL __ device void
#include ""common.cpp™ #include " "common.cpp™
}
void FitTracks() { __global void FitTracksGPU() {
for (inti=0;i <nTr;i++) { FitTrack(threadldx.x);
FitTrack(n); }
}
} void FitTracks() {
FitTracksGPU<<<nTr>>>();
}

- Same source code for CPU and GPU version
— The macros are used for API-specific keywords only.
— The fraction of common source code is above 90%.

28.09.2016 12
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The ALICE reconstruction and simulation framework AliRoot is based on C++.
» Track reconstruction must be C++.
« OpenCL and C++ is a complicated story, which leaves (left) NVIDIA CUDA as sole alternative in the
beginning.
 Since last year, we use OpenCL with AMD C++ kernel extensions on AMD GPUs.
CUDA still supported through common source code.
Unfortunately, this makes OpenCL single-vendor too — only AMD supports it.
Performance comparison inconvenient, because we cannut use the same API.

« We are really hoping for C++ extensions in OpenCL 2.0.

« We support:

AMD GPUs via OpenCL and C++ extensions

NVIDIA GPUs via CUDA Common source code
CPUs (via OpenMP if needed)

Prototype for SSE / AVX / Xeon Phi via Vector library (Vc)

28.09.2016 13
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* In any case, the host code should be identical.
« Complicated long kernels codes could be shared.
« Specialized hand-tuned short (assembler-like) kernels should be created for every device.
— Also, special versions of “hot-spot” device functions can be used by a common kernel.

« The host code should have a generic (or abstract) interface to use.
« We use templates or virtual classes here (only for the “management” code).
* One derived class of virtual base class for every supported API.
» A virtual function call to initiate a DMA transfer / start a kernel is no overhead!
* No virtual functions in performance critical device code.
— Anyway: limited availability for virtual functions in APIs (CUDA does it for some time now).

« Ifaclassthatis used on the GPU shall have virtual functions (for management on the host):
» We have a non-virtual base-class used on the GPU (do not want virtual calls there anyway).
»  Virtual functions only added on derived class used on the host (data layout of base class remains).
* This works even when the GPU API does not have virtual features.

28.09.2016 14
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. Do not overdo it!

Which API shall we use

for our application?
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. Do not overdo it!

Which API shall we use

for our application?

Well, | just checked.
There are 10 APIs. Each

has pros and cons.

28.09.2016 16
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. Do not overdo it!

Which API shall we use
for our application?

Well, | just checked.
There are 10 APIs. Each
has pros and cons.

So which do we use?

28.09.2016 17
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. Do not overdo it!

Which API shall we use
for our application?

Well, | just checked.
There are 10 APIs. Each
has pros and cons.

So which do we use?

Hey, | got an idea. Let’s
create a new general API
that abstracts all others

28.09.2016
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. Do not overdo it!

Which API shall we use

for our application?

« Use one that fits now!
* This is a rapidly changing field.
» Keep your code generic so you can switch.
« C and (restricted) C++ code can be executed everywhere, CUDA / OpenCL are not so different.
* Do not use fancy features where not needed.
 Try to start to have a common code for the CPU and for your API of choice!

28.09.2016 19
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Even though the source code is identical, GPU and CPU yield different results.
We identified three causes:

» Cluster to track assignment

« Variances during track merging

* Non-associative floating point arithmetic

Comparison of HLT CPU and GPU (Graphics Processing Unit) Trackers

(Raw Output without Cuts)
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» Cluster to track assignment

* Problem: Cluster to track assignment was depending on the order of the
tracks.

— Each cluster was assigned to the longest possible track. Out of two
tracks of the same length, the first one was chosen.

— Concurrent GPU tracking processes the tracks in an undefined order.

« Solution: We need a continuous (floating point) measure of the track
quality.
— Two 32-bit floats can still be identical, but that is unlikely.

« Similar problem in track merging, which depended on track order.

28.09.2016 21
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* Non associative floating point arithmetic

* Problem: Different compilers perform the arithmetic in different order (also on
the CPU).

« Solution: Cannot be fixed, but...
— Slight variations during the extrapolations do not matter as long as the
clusters stay the same.

— Inconsistent clusters: 0,00024% 35000

v
30000 fy,
25000 ~ b

20000 -

Tracks

* Now, perfect match of CPU and GPU results in plots...” \

10000 _ 4

 ...But not binarily. oo | \\
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Clusters
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3000 Neighbors Finder mmmmm
Tracklet Selector

Not all processors are the same... Shared

« how to optimize for all of them? Memory ; = = .
« A code tailored for GPUs is not necessarily optimal for CPUs. Size .

0

* Many features can be parameterized.
Algorithm internal parameters.
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« All new features we added can be switched off.

« Parameters can be changed easily - mostly at compile time.
* Viatemplates
* Or preprocessor directives.

« Through runtime-compilation (CUDA / OpenCL), one can still easily run parameter
scans.

« Essentially, it took us three iterations to add / parameterize features:
* NVIDIA GTX 285 (First version)
«  NVIDIA GTX 480 (New GPU Model)
+  AMD S9000 (OpenCL / Other Vendor / New GPU)

« For new GPUs, we could find good parameters via parameter range scan.
For instance, 140 ms = 50 ms switching from Keppler to Maxwell.
Of course, we do not really know whether this is optimal.

28.09.2016 24
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. What about special GPU features: e.g. shared memory?

Does not really matter. Xeon
Every memory on the CPU is “shared”. CPU
Use (thread-local) normal memory for reductions etc.

Activate / deactivate explicit shared memory caches via pointer access.

. Single or double precision?

Only single or mixed, usually you don’t need double everywhere.

NVIDIA
*  The biggest problem we face (with low-level APIs):

 SIMD v.s. SIMT

* Infact, the Hardware is the same:
— One instruction decoder.
— Vector or vector-like processing.
— Essentially, a GPU multiprocessor is a core.
—  Awarp is a vector-processing unit. Xeon Phi

»  But the programming is not the same.
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« How to program for SIMD and SIMT, or
how to support SSE/AVX/Xeon Phi and GPUs?

« Obviously no intrinsics.
« Automatic parallelization / vectorization does not work (in a general scope).

« Could use OpenCL (SIMD processors can run SIMT code using Masks, Gathers, Scatters).
(Essentially, SIMT is SIMT + automatic masks, gathers, scatters.)

— No good experience with OpenCL on Xeon Phi KNC.
— No OpenCL (yet?) for Xeon Phi KNL.
— OpenCL utilization of vector units of CPUs (SSE / AVX) suboptimal.
—  SSE / AVX lack SIMT instructions — getting better with AVX512 moving towards Xeon Phi ISA.
— CPUs usually faster with OpenMP ( + vectorization) than with OpenCL.
* Could use vector libraries (e.g. Vc) on GPU.
— Difficult to implement (in C++).
= Vc C++ expects one thread, but SIMT “simulates” multiple threads.

28.09.2016 26
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This question is the reason why we currently have
* A common tracker for CUDA / OpenCL / OpenMP.
« A forked prototype for Vc supporting AVX / Xeon Phi.

Could use both OpenCL / CUDA and Vc vector library togeter.
» For the GPU code, we use the scalar library version.

Then, Vc library could vectorize for AVX / Xeon Phi, SIMT would “vectorize” for GPUs.
« Vectorization should be efficient, because data structure guidelines are the same (SoA v.s. AoS).
- More maintenance effort.
- Possible compatibility issues.
= Ugly!

No good solution yet.

28.09.2016 27



Optimizatiens| (Perf gqn\a_n ce) % FIAS Frankir Insiute €

« Splitting of problems in parts, for us this means...

« separation of event in sectors enables the use of a Pipeline:
— Tracking on GPU, pre-/postprocessing on CPU, and data transfer run in parallel.

DMA [ 01 RITEIN BOBORNN

GPU (NNENENNENNNEEEEER

CPU 1 INENINEN NN B EEENEN
CPU 2 IS I EEENEN
CPU 3 I I EEEEN

>

Zeit
Routine: M Initialization [ ] Neighbor Finding B Tracklet Construction B Tracklet Selection M Tracklet Output

« This is a very general concept which could apply to all GPU applications.
* (Not needed when data stays on the GPU all the time).
« Splitting the workload usually simplifies processing a part on the CPU.
* However, in most cases we don’t have a single workload.
*  We offload what runs efficiently on the GPU, and use the CPU for other tasks.
* One can dedicate one core for scheduling with fast response.

28.09.2016
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Linpack iteratively factorizes a dense A - Matrix

system of linear equations. B e

» Heavy use of linear algebra (BLAS) Panel
i [ Trailing Matrix
library. 1t oo

« Most time consuming step is matrix- %gm:::i
matrix multiplication (DGEMM).

« DGEMM is ideally suited for GPUs.

C

CPUO W BN i I I I I I
. . .. CPU1  WEAEINEBOENNEOBOEOEDNEREDRNUEOEDODOEDNNOUREROERE0EDOR0RONEE
A similar asynchronous pipelineis cpu2  sngnnssssanaissngsaasnanigssanaauniERnanuuuEEEnRnuuununnnn|

CPU 3-7

used, in this case with multiple OMA T 00000 NN 0000000 W 0 10000000 N 00000 0 0000 000000000000 0 A0 000000000 ARR00A00
GPUO W
GPUs. GPUL M
CPU 0 Il I 1 ] I Il I I
CPU 1 DOONNONERRRRRRNEONNNOOOEOOOEORERNENNNNNNRENENEORRRRRORORRAND
Few special, non-common linear EEB §-7 \DunnnnnunnnunnnununnuuuunnnnnnDDDununnunuuuuunnuunnnunnlnuuuuul
algebra kernels for each GPU. 2%\0 A0 0000000 0 00 0 N 00001000 K0 0 00 00 000 00 SN 080000000 N 00000000 0000 WAMAR0000000
. . GPU RSN R R RN R R RN RN RN RN RN REREE R R
Only host code shared in this case, ™' —

W h I C h IS th e m a'J O r I ty Of th e CO d e . Tasks: [l Divide A [ Divide B [l Transfer A [] Transfer B [l Fetch C [ Merge [l DGEMM Kernel [T BLAS Phase 1-3
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« What speedup to we get / can we expect from GPUSs.
* How to measure it.

« Stating only the time to solution might sound nice, but does not tell
the whole store.

28.09.2016 30
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* Question: Which model accounts best for the experimental EM image?

Models

P(Models | Images)

1

Images

28.09.2016 31
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Point spread
Function (PSF)

[AR> X’ 9]

Z Likelihood?

Convolution

a) Reconstruct the e
model from the images. Projection

b) We create images out of the
model and compare calculated
and observed images with a hybrid S
Bayesian analysis. N~

Center
displacement

[d]

Normalization [N] |*
+ Offset [u]
+ Noise [A]
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« What speedup to we get / can we expect from GPUSs.
* How to measure it.

« Total speedup of optimized BioEM (electron microscopy) program
using GPU: 1000x — 13000x!!!

28.09.2016 33
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« What speedup to we get / can we expect from GPUs.
* How to measure it.

« Total speedup of optimized BioEM (electron microscopy) program
using GPU: 1000x — 13000x!!!

* |Is that apples compared to apples?
* Which CPU, which GPU?

« How many cores were used?

- Was vectorization used?

* Is it actually the same algorithm?

* Is the result the same?

28.09.2016 34
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Time [s]

 Performance evolution over time: The plot shows execution time, speedup

compared to previous version, and total speedup.
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Improved Vectorized First
C++ Version

42.625/7.33x/29.32x

8.2355/518x/151.8x

0.0835/6.39x/25.56 x
0.1205/0.69x/17.72x
0.0485/2.49x /44,16 x

FFT Version

2.8095/2.93x /4448 x

Improved Real-Hermitian
FFT Version

0.0115/4.46x/537.9x

0.5815/4.84 x /2151 x

Multi-

Threaded

.00213 5/5.07 x / 998.6 x

130 Maps D
11000 Maps hmm

0.106's/5.48 x / 11790 x
0.091s/1.16x /13733 x

.00208s/1.02 x /1023 x

GPU GPU + CPU

Speedup
depends on
settings

1000x —
13000x
speedup

1 year
down to

40 min for
13000 maps
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« What speedup to we get / can we expect from GPUs.
*  How to measure it.
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« What speedup to we get / can we expect from GPUs.
*  How to measure it.

 Full GPU v.s. Full CPU (with all cores)
| like this one, but how many cores?

28.09.2016 37
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« What speedup to we get / can we expect from GPUs.
How to measure it.

 Full GPU v.s. Full CPU (with all cores)
| like this one, but how many cores?

« GPUv.s.one CPU core (and state it is one core)
Can be misleading, but better.
But how does the CPU scale?

28.09.2016 38
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What speedup to we get / can we expect from GPUSs.

How to measure it.

Full GPU v.s. Full CPU (with all cores)
| like this one, but how many cores?

GPU v.s. one CPU core (and state it is one core)
Can be misleading, but better.
But how does the CPU scale?

Full GPU v.s. Full CPU / number of cores
Even better, but
— Scaling might depend on number of cores.
—  Which GPU after all?
— Which CPU model, which frequency?

28.09.2016
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« The compute performance alone is no reasonable metric!
— The GPU is the faster chip — by construction.
— The are many claims showing a 30x — 1000x speedup on GPU!
- CPU code should be optimized before the comparison!

« We consider the following .. , \ Ao/
relative efficiency: E = EfﬁCI,CnC} on GPU = (99/py)
Efficiency on CPU  (ac¢/p,.)

o ag/ac

Py/pc

The advantage is of the second form is: achieved performance and theoretical peak
performance can be measured in different units.

28.09.2016 40
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Overview

of speedup
in several
applications:

Benchmark ~ Type Hardware Performance Y% of peak  Speedup & [%]

(old) HLT ~ Single  Nehalem 4C 3 GHz 1122 ms

Tracker GTX285 + CPU 312 ms 3.60 53

(new) HLT  Single  2xMagny-Cours 2.2 GHz 495 ms

Tracker GTX580 + CPU 155 ms 3.19 85

Track Single ~ Westmere 6C 4 GHz 65 ms

Merger GTX580 + CPU 60 ms 1.10 13

DGEMM Double  2xMagny-Cours 2.1 GHz 180 GFlop/s 89.3

(Kernel) 5870 494 GFlop/s 90.8 274 102
6970 624 GFlop/g 92.3 3.47 103
7970 805 GFlop/s 34.4 4.47 95

DGEMM Double  2xMagny-Cours 2.1 GHz 180 GFlop/s 89.3

(System) 5870 + CPU 623.5 GFlop/s 83.6 3.46 94
3x5870 + CPU 1435 GFlop/s 78.3 7.98 87
2x6990 2292 GFlop/s 89.9 12.73 104
2xS10000 2923 GFlop/s 79.8 16.24 89

One-Node Double  2xMagny-Cours 2.1 GHz 174.6 GFlop/s 86.6

HPL 5870 + CPU 563.2 GFlopfs 75.5 3.23 87
3x5870 + CPU 1114 GFlop/y 60.7 6.38 70
2x6990 + CPU 2007 GFlop/s 72.4 11.49 84
2xS510000 + CPU 2679 GFlopfs 73.1 15.34 84

Erasure 32-bit  Westmere 6 - 3.8 GHz 14.3GB/s 4.7

Codes logical ~ GTX580 72.5 GB/y 75.3 5.32 102

(small n) 6970 51.1 GB/s 58.0 4.10 78
Virtex 6 LX240 FPGA 2187.0 GB/s 152.94

Erasure 32-bit  Sandy Bridge 1-3.7 GHz 251.0 GAOR/;

Codes logical ~ Westmere 6 - 3.8 GHz 807.0 GAOp/s

(large n) GTX580 908.4 GAOp/s 1.13 19
6970 1024 GAOp/y 1.27 26
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The compute performance alone is no reasonable metric!
— The GPU is the faster chip — by construction

« We consider the following: c Efficiency on GPU  (ag/p,)
Efficiency on CPU  (ac¢/p,.)

Ag/a,

~ Pofpe

Most of our applications reach about 70% or more in this metric.

There are exclusions:
— PCI Express can limit the performance (track merger, encoding with small n / k).
— CPU Compilers are better and allow more flexible core (JIT-compiled encoding).
— CPU caches can better hide memory latencies (Electron Microscopy).
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« Compare specifications to requirements first, is the GPU suited for your program (PCle limit etc.)
« Write generic source code, do not maintain multiple code bases!

Simple code is easily portable. Use the when needed, not for fun.

 Write fast code where it is critical, write “nice” code otherwise.

Parameterize optimization features, to easily tune them for new hardware - portability.

Split problem in parts. Enables load balancing and pipelined processing.

« Tell us exactly what you compare for the speedup.

Results should include how it scales (to large GPUs / multiple cores).

Relative performance numbers can help to judge the efficiency (relative speedup often ca. 70%).
*  Optimizing “old” applications usually yields a great speedup on the CPU, too.

Optimization strategies are not too different, the GPU and CPU architectures converge.

(Good code, optimized fort both CPU and GPU, often runs around 3x to 4x faster on GPU.)

« Compiler optimizations will give you inconsistent floating point results on CPU.

Do not expect this to be better on the GPU. Try to keep the algorithm consistent.

» Use single precision where possible, double where needed, mixed is OK.
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