
Heterogeneous platforms 

¨  Systems combining main processors and accelerators 
¤  e.g., CPU + GPU, CPU + Intel MIC, AMD APU, ARM SoC 

Any platform using a GPU is a heterogeneous platform! 



Thousands	  of	  Cores 

Few	  
cores 

Further in this talk … 

¨  A heterogeneous platform = 1 CPU + n GPUs 
¨  Execution model = computation/kernel offloading 
¨  An application workload = an application + its 

input dataset 
¨  Workload partitioning = workload distribution 

among the processing units of a heterogeneous 
system 



Heterogeneity vs. Homogeneity 

¨  Increase performance 
¤ Both devices work in parallel 
¤  (might) Decrease data communication  
¤ Different devices play different roles  

¨  Increase flexibility and reliability 
¤ Choose one/all *PUs for execution 
¤ Fall-back solution when one *PU fails 

¨  Increase power efficiency  
¨  Cheaper per flop 



Goals* 

¨  Demonstrate heterogeneous 
computing is interesting 

¨  Discuss the landscape of 
heterogeneous computing 
¤ Programming models 
¤ Partitioning models  

¨  Tell some success stories 
¨  Present open questions  

challenging 

CPU 



CPU vs. Accelerator (GPU) 
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Control 

Compute 

Cache 

CPU 
Low latency, high 
flexibility. 
Excellent for irregular 
codes with  
limited parallelism. 

GPU 
High 

throughput.  
Excellent for  

massively  
parallel  

workloads.  

Compute 

Compute Compute 

communication 



Example 1: dot product 

¨  Dot product 
¤ Compute the dot product of 2 (1D) arrays 

¨  Performance  
¤  TG = execution time on GPU  
¤  TC = execution time on CPU  
¤  TD = data transfer time CPU-GPU 

¨  GPU best or CPU best?  

6 
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0

50

100

150

200

250

Ex
ec
ut
io
n�
tim
e�
(m
s)

TG TD TC TMax

7 



Example 2: separable convolution 

¨  Separable convolution (CUDA SDK) 
¤ Apply a convolution filter (kernel) on a large image. 
¤  Separable kernel allows applying 

n  Horizontal first 
n  Vertical second  

¨  Performance  
¤  TG = execution time on GPU  
¤  TC = execution time on CPU  
¤  TD = data transfer time 

¨  GPU best or CPU best?  



Example 2: separable convolution 
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Example 3: matrix multiply 
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¨  Matrix multiply  
¤ Compute the product of 2 matrices  

¨  Performance  
¤  TG = execution time on GPU  
¤  TC = execution time on CPU  
¤  TD = data transfer time CPU-GPU 

¨  GPU best or CPU best?  



Example 3: matrix multiply 
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Findings 

¨  There are very few GPU-only applications  
¤ CPU – GPU communication bottleneck.  
¤  Increasing performance of CPUs  

¨  Optimal partitioning between *PUs is difficult 
¤ Load balancing depends on (platform, application, 

dataset)  
¤  Imbalance => performance loss versus original !  

¨  Programming different platforms with a coherent 
model is difficult  

12 
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We need systematic methods (1) to program and (2) to 
partition workloads for heterogeneous platforms. 



Programming  



Programming models (PMs) 

¨  Variety of options  
¤ Platform-specific programming models 
¤ Unified programming models  
¤ Heterogeneous programming models (WiP) 

¨  Taxonomy: abstraction level and generality  
 

OmpSs 

4.0 

High level Low level 



Heterogeneous Computing PMs 
16 

High  
level 

Low 
level 

Generic 

Specific 

 
OpenACC, OpenMP 4.0 
OmpSS, StarPU, … 
HPL 

HyGraph (graph processing), 
Cashmere (divide and conquer) 
GlassWing (mapReduce) 

TOTEM (graph processing) OpenCL 
OpenMP+CUDA 

Domain and/or 
application specific. 

Focus on: productivity 
and performance 

Domain specific, focus 
on performance. 
Difficult to use. 

The most common atm. 
Useful for performance, 
difficult to use in practice 

Higher level abstraction. 
Dedicated APIs/pragma’s. 

Focus on ease of use. 



Partitioning  



Determining the partition	�

¨  Static partitioning (SP) vs. Dynamic partitioning (DP)	�

18 

Thousands	  of	  Cores 

Mul3ple	  
Cores 

Thousands	  of	  Cores 

Mul3ple	  
Cores 



Static vs. dynamic 	�
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¨  Static partitioning  
¤ + can be computed before runtime => no overhead 
¤ + can detect GPU-only/CPU-only cases  
¤ + no unnecessary CPU-GPU data transfers  
¤  -- does not work for all applications  

¨  Dynamic partitioning  
¤ + responds to runtime performance variability 
¤ + works for all applications  
¤  -- incurs (high) runtime scheduling overhead  
¤  -- might introduce (high) CPU-GPU data-transfer overhead 
¤  -- might not work for CPU-only/GPU-only cases  



Determining the partition	�

¨  Static partitioning (SP) vs. Dynamic partitioning (DP)	�
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Thousands	  of	  Cores 

Mul3ple	  
Cores 

Thousands	  of	  Cores 

Mul3ple	  
Cores 

(near-) Optimal  
Low applicability  

Often sub-ptimal  
High applicability  



A simple taxonomy 
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Single  
kernel 

Multi-kernel 
(complex) DAG 

Static Dynamic 

 
Qilin, Insieme, SKMD, 
Glinda, ...  

Run-time based systems:  
StarPU 
OmpSS 
… 

“unlimited” applicability, 
potentially high overhead 

Limited applicability. 
Low overhead => high 

performance  

? 

? Our goal is to extend the use of static partitioning for 
as many applications as possible.   

Dynamic partitioning is an excellent fallback scenario !  



Static partitioning: Glinda* 

¨  Model  
¤ The application workload 
¤ The hardware capabilities 
¤ The GPU-CPU data transfer 

¨  Predict the optimal partitioning 
¨  Making the decision in practice 

¤ Only-GPU 
¤ Only-CPU 
¤ CPU+GPU with the optimal partitioning 

*Jie Shen et al., HPCC’14.  
“Look before you Leap: Using the Right Hardware. 

Resources to Accelerate Applications 

Model 

Determine 
partitioning 

Deploy 
application 



(+TD)	  

Model the partitioning 
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¨  Define the optimal (static) partitioning 
¤ β= the fraction of data points assigned to the GPU  

TG +TD = TC



Model the workload 
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n

w

n:	  the	  total	  problem	  size	  
w:	  workload	  per	  work-‐item	�



Model the workload 
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n

w

n:	  the	  total	  problem	  size	  
w:	  workload	  per	  work-‐item	�

0 1

GPU	  par33on	� CPU	  par33on	�

WG=w	  x	  n	  x	  β	  	�

β 1-‐β	�

WC=w	  x	  n	  x	  (1-‐β)	  	�

*W	  (total	  workload)	  quan3fies	  how	  much	  
work	  has	  to	  be	  done	  

W = wi
i=0

n−1

∑ ≈ the area of the rectangle 



Model the hardware  

Two pairs of  metrics  
W: total workload size 
P: processing throughput (W/second) 
 
O: data-transfer size 
Q: data-transfer bandwidth (bytes/second) 

TG =
WG

PG
TD =

O
Q

 TC=
WC

PC

TG +TD = TC WG

WC

=
PG
PC
×

1

1+ PG
Q
×
O
WG

W =WG +WC



Determine the partitioning 

¨  Estimating the HW capability ratios by using profiling 
¤ The ratio of GPU throughput to CPU throughput  
¤ The ratio of GPU throughput to data transfer bandwidth 

WG

WC

=
PG
PC
×

1

1+ PG
Q
×
O
WG

RGC 

CPU kernel execution time vs. 
GPU kernel execution time  

GPU data-transfer time vs.  
GPU kernel execution time 

RGD 

β dependent terms 



Determine the partitioning 

¨  Solving β from the equation 

 
¨  There are three β predictors (by data transfer type) 

WG

WC

=
PG
PC
×

1

1+ PG
Q
×
O
WG

Total workload size 

HW capability ratios 

Data transfer size 

β predictor 

β =
RGC
1+ RGC

β =
RGC

1+ v
w
×RGD + RGC

β =
RGC −

v
w
×RGD

1+ RGC

No data transfer Partial data transfer Full data transfer 



Making the decision in practice 

¨  From β to a practical HW configuration 
¤ utilization Calculate NG and NC 

NG = n xβ 
NC = n x (1-β)  

NG<its lower 
bound 

Only-CPU 

Nc<its lower 
bound 

Only-GPU 

Round up NG  

CPU+GPU 
Final NG and NC 

Y 

N 

Y 

N 

NG: GPU partition size 
NC: CPU partition size 



Glinda outcome 
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¨  A data-parallel application can be transformed to 
support heterogeneous computing 

 
¨  A decision on the execution of the application 

¤ only on the CPU 
¤ only on the GPU 
¤ CPU+GPU 

n And the partitioning point  



Success story #1 

¨  Applied Glinda for 7 (single-kernel) applications x 
6 datasets per application  
¤ 42 tests  

¨  38/42 Glinda selected the best configuration  
¤ 14 CPU-only 
¤    4 CPU+GPU incorrect  
¤ 20 CPU+GPU correct    

¨  In all cases Glinda gains speed-up over GPU-only 
¤ 1.2x-14.6x speedup 



How to use Glinda?  

¨  Profile the platform to determine RGC, RGD 
¨  Use the Glinda solver and determine β 
¨  Take the decision: Only-CPU, Only-GPU, CPU+GPU (and 

partitioning) 
¤  if needed, apply the partitioning 

¨  Code preparation 
¤  Parallel implementations for both CPUs and GPUs  
¤ Code templates for partitioning  
¤  Instrumentation for profiling 

¨  Code reuse 
¤  Single-device code and multi-device code are reusable for 

different datasets and HW platforms	�

*HPL supports 
Glinda.  

*http://hpl.des.udc.es 



Success story #2  



Sound ray tracing 
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1	� 2	�



Sound ray tracing 
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Which hardware?  

Our application has …  
¨  Massive data-parallelism … 
¨  No data dependency between rays …  
¨  Compute-intensive per ray …  

… clearly, this is a perfect GPU workload !!! 



Initial Results 
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Only	  2.2x	  performance	  improvement!	  	  
We	  expected	  100x	  …	  	  
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Modeling the imbalanced workload 
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Glinda for imbalanced workloads 
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Final results 
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62% performance improvement 
compared to “Only-GPU” 

Glinda determines the optimal partitioning for any case,  
enabling the performance gain for free  



More complex applications 

¨  State-of-the-art: dynamic partitioning (OmpSs, StarPU) 
¤  Partition the kernels into chunks 
¤ Distribute chunks to *PUs 
¤  Keep data dependencies 
¤  Enabling multi-kernel asynchronous execution (inter-kernel 

paralelism) 
¤  Respond automatically to runtime performance variability 
¤  (Often) leads to suboptimal performance  

n  Scheduling policies and chunk size 
n  Scheduling overhead (taking the decision, data transfer, etc.) 

Can we extend the use of static partitioning ?  

*Jie Shen et al., IEEE TPDS’16.  
“Workload Partitioning for Accelerating Applications on Heterogeneous Platforms” 



More complex applications 

¨  We combine static and dynamic partitioning 
¤ We design an application analyzer that chooses the best 

performing partitioning strategy for any given application 

source 
code

(2) Analyze the app 
kernel structure

(1) Implement 
the app

App 
class 

(3) Select the 
partitioning strategy

Partitioning strategy 
repository

(4) Enable the 
partitioning in the code

App 
classification

Implement/get  
the source code	�

Analyze  
application’s class	�

Select a  
partitioning strategy	�

Enable 
the partitioning	�



Application classification 

...

I II III IV V

k0 k0

k0

k1

kn

k0

k1

kn

k0

k1
k2

k3 k4

k5
...

SK-One SK-Loop MK-Seq MK-Loop MK-DAG

5 application classes	�

Implement/get  
the source code	�

Analyze  
application’s class	�

Select a  
partitioning strategy	�

Enable 
the partitioning	�

A survey* demonstrates that most applications belong to 
classes I-III, a few to class IV, and none to class V. 

*Jie Shen et al., TUDelft technical report, 
“A Study of Application Kernel Structure for Data Parallel Applications”  



Partitioning strategies: before 

GPU CPU GPU CPU

GPU CPU

GPU CPU

k0 k0

k1

k2

GPU CPU

GPU CPU

GPU CPU

k0

k1

k2

global sync

global sync

global sync

k0

k1

GPU 

CPU thread 0

data dependency
chains

scheduling policies
DP-Dep or DP-Perf

CPU thread 1

thread 0 thread 1

• SP-Varied• SP-Unified• SP-Single

• DP-Dep & DP-Perf

scheduled
partitions

Static partitioning: 
single-kernel applications 

Implement/get 
the source code	�

Analyze  
application’s class	�

Select a  
partitioning strategy	�

Enable 
the partitioning	�

Dynamic partitioning: 
multi-kernel applications 



Implement/get 
the source code	�

Analyze  
application’s class	�

Select a  
partitioning strategy	�

Enable 
the partitioning	�

Partitioning strategies: now 

GPU CPU GPU CPU

GPU CPU

GPU CPU
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scheduling policies
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CPU thread 1

thread 0 thread 1

• SP-Varied• SP-Unified• SP-Single
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scheduled
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Static partitioning: in Glinda 
single-kernel + multi-kernel applications 

Dynamic partitioning: in OmpSs 
multi-kernel applications (fall-back scenario) 



Partitioning strategies 

GPU CPU GPU CPU
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chains

scheduling policies
DP-Dep or DP-Perf

CPU thread 1

thread 0 thread 1

• SP-Varied• SP-Unified• SP-Single

• DP-Dep & DP-Perf

scheduled
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Glinda: single-kernel Glinda 2.0: multi-kernel 

OmpSs: dynamic partitioning (fall-back scenario) 



Success story #3 

¨  6 applications  
¤ 2 type I, 2 type II,  1 type III, and 1 type IV 

¨  Glinda detects and uses the best partitioning 
strategy 
¤ SP-Single for type I, II   
¤ SP-Unified or SP-Varied for types III and IV 

n Depends on the synchronization model  

¨  In all cases, Glinda’s static partitioning outperforms 
OmpSS’ dynamic partitioning  

...

I II III IV V

k0 k0

k0

k1

kn

k0

k1

kn

k0

k1
k2

k3 k4

k5

...
SK-One SK-Loop MK-Seq MK-Loop MK-DAG

Glinda is the only static 
partitioner to support 

multi-kernel applications.  



Results* 

¨  MK-Loop (STREAM-Loop) 
¤ w/o sync:  SP-Unified > DP-Perf >= DP-Dep > SP-Varied 
¤ with sync:  SP-Varied > DP-Perf >= DP-Dep > SP-Unified 
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*Jie Shen et al., ICPP’15.  
“Matchmaking Applications and Partitioning Strategies for Efficient Execution on Heterogeneous Platforms” 

Similar results for all 6 applications with 
multiple kernels. 



Heterogeneous Computing today* 
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Single  
kernel 

Multi-kernel 
(complex) DAG 

Static Dynamic 

 
Qilin, Insieme, SKMD, 
Glinda, ...  

Sporadic attempts  
and light runtime 
systems  

Run-time based systems:  
StarPU 
OmpSS 
… 

Only Glinda, for restricted 
types of DAGs. 

Not interesting, 
given that static & 

run-time based 
systems exist.  

High Applicability, 
potentially high 

overhead 

Improved applicability, but 
remains limited. 

Low overhead => high 
performance 

Limited applicability. 
Low overhead => high 

performance  

*A.L.Varbanescu et al., FDL’16.  
“Heterogeneous Computing with Accelerators: an Overview with Examples.” 



Instead of conclusion …  



Take home message [1]   

¨  Heterogeneous computing works!  
¤ More resources.  
¤  Specialized resources. 

¨  Performance gain for free  
¤ Or at the price of some minor code changes  

¨  Plenty of systems to support you  
¤ Different programming models  
¤ Generic systems for static/dynamic partitioning  
¤ Domain-specific/Application-specific models  

n  Totem, HyGraph – graph processing  
n  GlassWing – MapReduce  
n  Cashmere – Divide&Conquer  

52 

to the office 



Take home message [2]   

You have an application to run?  
¨  Now: Choose one solution based on your 

application scenario: 
¤ Single-kernel vs. multi-kernel  
¤ Massive parallel vs. Data-dependent  
¤ Single run vs. Multiple run  
¤ Programming model of choice  

¨  WiP: Framework to combine them all  
¤ Start from: Glinda + OmpSS 

n We are still working on it J  

53 
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Ultimate goal (WiP) 

source 
code

(2) Analyze the app 
kernel structure

(1) Implement 
the app

App 
class 

(3) Select the 
partitioning strategy

Partitioning strategy 
repository

(4) Enable the 
partitioning in the code

App 
classification

High  
Performance 
Heterogeneous 
Computing 

SEMI- 
automated  

decision 



Open questions  

¨  Analytical modeling instead of profiling  
¨  Unified programming models  

¤ Performance portability  
¨  Extending to more specific types of workloads   
¨  Performance modeling and prediction  

¤ What is the right hardware for my software?  

¨  Understand the links with other fields where 
heterogeneous computing is already heavily used: 
¤ Embedded systems, cyber-physical systems, etc.  



Heterogeneous computing works! 

Ana Lucia Varbanescu – A.L.Varbanescu@uva.nl 
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? !? 


