Heterogeneous platforms

Systems combining main processors and accelerators
 e.g., CPU + GPU, CPU + Intel MIC, AMD APU, ARM SoC

Any platform using a GPU is a heterogeneous platform!

Further in this talk ...

- \Box A heterogeneous platform = 1 CPU + n GPUs
- Execution model = computation/kernel offloading
- An application workload = an application + its input dataset
- Workload partitioning = workload distribution among the processing units of a heterogeneous system

Heterogeneity vs. Homogeneity

- Increase performance
 - Both devices work in parallel
 - (might) Decrease data communication
 - Different devices play different roles
- Increase flexibility and reliability
 - Choose one/all *PUs for execution
 - Fall-back solution when one *PU fails
- Increase power efficiency
- Cheaper per flop

Demonstrate heterogeneous computing is interesting challenging

- Discuss the landscape of heterogeneous computing
 - Programming models
 - Partitioning models
- Tell some success stories
- Present open questions

CPU vs. Accelerator (GPU)

Example 1: dot product

- Dot product
 - Compute the dot product of 2 (1D) arrays

Performance

- **T**_G = execution time on GPU
- **T**_C = execution time on CPU
- T_D = data transfer time CPU-GPU

GPU best or CPU best?

Example 1: dot product

7

Example 2: separable convolution

Separable convolution (CUDA SDK)

- Apply a convolution filter (kernel) on a large image.
- Separable kernel allows applying
 - Horizontal first
 - Vertical second
- Performance
 - **T**_G = execution time on GPU
 - **T**_C = execution time on CPU
 - $\Box T_D = data transfer time$

GPU best or CPU best?

Example 2: separable convolution

Example 3: matrix multiply

- Matrix multiply
 - Compute the product of 2 matrices
- Performance
 - **T**_G = execution time on GPU
 - **T**_C = execution time on CPU
 - T_D = data transfer time CPU-GPU
- GPU best or CPU best?

Example 3: matrix multiply

11_

Findings

- There are very few GPU-only applications
 - CPU GPU communication bottleneck.
 - Increasing performance of CPUs
- Optimal partitioning between *PUs is difficult
 - Load balancing depends on (platform, application, dataset)
 - Imbalance => performance loss versus original !
- Programming different platforms with a coherent model is difficult

Findings

- There are very few GPU-only applications
 - CPU GPU communication bottleneck.
 - Increasing performance of CPUs
- Optimal partitioning between *PUs is difficult
 - Load balancing depends on (platform, application, dataset)
 - Imbalance => performance loss versus original |

We need systematic methods (1) to <u>program</u> and (2) to <u>partition</u> workloads for heterogeneous platforms.

Programming models (PMs)

- Variety of options
 - Platform-specific programming models
 - Unified programming models
 - Heterogeneous programming models (WiP)
- Taxonomy: abstraction level and generality

High level

UpenACC

Open**MP**4.0

Heterogeneous Programming Library

Heterogeneous Computing PMs

Determining the partition

18

Static partitioning (SP) vs. Dynamic partitioning (DP)

Static vs. dynamic

Static partitioning

- + can be computed before runtime => no overhead
- + can detect GPU-only/CPU-only cases
- + no unnecessary CPU-GPU data transfers
- -- does not work for all applications
- Dynamic partitioning
 - + responds to runtime performance variability
 - + works for all applications
 - -- incurs (high) runtime scheduling overhead
 - -- might introduce (high) CPU-GPU data-transfer overhead
 - -- might not work for CPU-only/GPU-only cases

Determining the partition

20

Static partitioning (SP) vs. Dynamic partitioning (DP)

Static partitioning: Glinda*

Model

- The application workload
- The hardware capabilities
- The GPU-CPU data transfer
- Predict the optimal partitioning
- Making the decision in practice
 - Only-GPU
 - Only-CPU

CPU+GPU with the optimal partitioning

*Jie Shen et al., HPCC'14. "Look before you Leap: Using the Right Hardware. Resources to Accelerate Applications

Model the partitioning

23

□ Define the optimal (static) partitioning $T_G + T_D = T_C$ □ β = the fraction of data points assigned to the GPU

Model the workload

Model the workload

*W (total workload) quantifies how much work has to be done

Model the hardware

$$T_G = \frac{W_G}{P_G} \quad T_C = \frac{W_C}{P_C} \quad T_D = \frac{O}{Q}$$

Two pairs of metrics

W: total workload size

P: processing throughput (W/second)

O: data-transfer size

Q: data-transfer bandwidth (bytes/second)

$$T_G + T_D = T_C$$

$$W = W_G + W_C$$

$$W_G = \frac{W_G}{W_C} = \frac{P_G}{P_C} \times \frac{1}{1 + \frac{P_G}{Q} \times \frac{O}{W_G}}$$

Determine the partitioning

- Estimating the HW capability ratios by using profiling
 - The ratio of GPU throughput to CPU throughput
 - The ratio of GPU throughput to data transfer bandwidth

Determine the partitioning

\square Solving β from the equation

Total workload size HW capability ratios Data transfer size

$$\frac{W_{G}}{W_{C}} = \frac{P_{G}}{P_{C}} \times \frac{1}{1 + \frac{P_{G}}{Q} \times \frac{O}{W_{G}}} \qquad \beta \text{ predictor}$$

 \square There are three β predictors (by data transfer type)

$$\beta = \frac{R_{GC}}{1 + R_{GC}}$$

No data transfer

$$\beta = \frac{R_{GC}}{1 + \frac{v}{w} \times R_{GD} + R_{GC}}$$
Partial data transfer

$$\beta = \frac{R_{GC} - \frac{v}{w} \times R_{GD}}{1 + R_{GC}}$$

Full data transfer

Making the decision in practice

\square From β to a practical HW configuration

Glinda outcome

A data-parallel application can be transformed to support heterogeneous computing

A decision on the execution of the application
only on the CPU
only on the GPU
CPU+GPU

And the partitioning point

Applied Glinda for 7 (single-kernel) applications x
 6 datasets per application

42 tests

38/42 Glinda selected the best configuration

- 14 CPU-only
- 4 CPU+GPU incorrect

20 CPU+GPU correct

In all cases Glinda gains speed-up over GPU-only

1.2x-14.6x speedup

How to use Glinda?

- \square Profile the platform to determine R_{GC}, R_{GD}
- \square Use the Glinda solver and determine β
- Take the decision: Only-CPU, Only-GPU, CPU+GPU (and partitioning)
 - if needed, apply the partitioning
- Code preparation
 - Parallel implementations for both CPUs and GPUs
 - Code templates for partitioning
 - Instrumentation for profiling
- Code reuse
 - Single-device code and multi-device code are reusable for different datasets and HW platforms

*http://hpl.des.udc.es

*HPL supports

Glinda.

Sound ray tracing

Sound ray tracing

Which hardware?

Our application has ...

- □ Massive data-parallelism ...
- □ No data dependency between rays ...
- □ Compute-intensive per ray ...

... clearly, this is a perfect GPU workload !!!

Initial Results

37

Workload profile

Bottom Processing iterations: ~500

Modeling the imbalanced workload

Glinda for imbalanced workloads

Final results

More complex applications

State-of-the-art: dynamic partitioning (OmpSs, StarPU)

- Partition the kernels into chunks
- Distribute chunks to *PUs
- Keep data dependencies

Can we extend the use of static partitioning ?

- Often) leads to suboptimal performance
 - Scheduling policies and chunk size
 - Scheduling overhead (taking the decision, data transfer, etc.)

*Jie Shen et al., IEEE TPDS'16. "Workload Partitioning for Accelerating Applications on Heterogeneous Platforms"

More complex applications

We combine static and dynamic partitioning

We design an application analyzer that chooses the best performing partitioning strategy for any given application

Application classification

Partitioning strategies: before

Static partitioning: single-kernel applications

Partitioning strategies: now

Static partitioning: in Glinda single-kernel + multi-kernel applications

the source code

application's class

partitioning strategy

the partitioning

Partitioning strategies

Success story #3

- 6 applications
 - 2 type I, 2 type II, 1 type III, and 1 type IV
- Glinda detects and uses the best partitioning strategy
 - SP-Single for type I, II
 - SP-Unified or SP-Varied for types III and IV
 - Depends on the synchronization model
- In all cases, Glinda's static partitioning outperforms OmpSS' dynamic partitioning Glinda is the only stat

Glinda is the only static partitioner to support multi-kernel applications.

Similar results for all 6 applications with multiple kernels.

MK-Loop (STREAM-Loop)

- w/o sync: SP-Unified > DP-Perf >= DP-Dep > SP-Varied
- with sync: SP-Varied > DP-Perf >= DP-Dep > SP-Unified

*Jie Shen et al., ICPP'15.

"Matchmaking Applications and Partitioning Strategies for Efficient Execution on Heterogeneous Platforms"

Heterogeneous Computing today*

"Heterogeneous Computing with Accelerators: an Overview with Examples."

Instead of conclusion ...

- Heterogeneous computing works!
 - More resources.
 - Specialized resources.
- Performance gain for free
 - Or at the price of some minor code changes
- Plenty of systems to support you
 - Different programming models
 - Generic systems for static/dynamic partitioning
 - Domain-specific/Application-specific models
 - Totem, HyGraph graph processing
 - GlassWing MapReduce
 - Cashmere Divide&Conquer

Take how message [2]

You have an application to run?

- Now: Choose one solution based on your application scenario:
 - Single-kernel vs. multi-kernel
 - Massive parallel vs. Data-dependent
 - Single run vs. Multiple run
 - Programming model of choice
- WiP: Framework to combine them all
 - Start from: Glinda + OmpSS
 - \blacksquare We are still working on it \bigcirc

Ultimate goal (WiP)

Open questions

- Analytical modeling instead of profiling
- Unified programming models
 Performance portability
- Extending to more specific types of workloads
- Performance modeling and prediction
 What is the right hardware for my software?
- Understand the links with other fields where heterogeneous computing is already heavily used:
 Embedded systems, cyber-physical systems, etc.

Heterogeneous computing works!

Ana Lucia Varbanescu – A.L.Varbanescu@uva.nl