Heterogeneous platforms
—

0 Systems combining main processors and accelerators
o e.g., CPU + GPU, CPU + Intel MIC, AMD APU, ARM SoC

RADEON




Further in this talk ...

]
0 A heterogeneous platform = 1 CPU + n GPUs

0 Execution model = computation/kernel offloading

1 An application workload = an application + its
input dataset

0 Workload partitioning = workload distribution
among the processing units of a heterogeneous
system

Thousands of Cores |



Heterogeneity vs. Homogeneity
N

0 Increase performance
O Both devices work in parallel
O (might) Decrease data communication
o Different devices play different roles
0 Increase flexibility and reliability
0 Choose one/all *PUs for execution

0 Fall-back solution when one *PU fails
0 Increase power efficiency

0 Cheaper per flop



Goals™
—

1 Demonstrate heterogeneous

computing is W

challenging

0 Discuss the landscape of
heterogeneous computing

O Programming models

O Partitioning models
0 Tell some success stories

01 Present open questions




CPU vs. Accelerator (GPU)

CPU
g

Excellent for irregular
codes with
limited parallelism.

Control

com ication

GPU

High
throughput.
Excellent for
massively
parallel
workloads.




Example 1: dot product

0 Dot product
O Compute the dot product of 2 (1D) arrays

1 Performance
O T; = execution time on GPU

O T = execution time on CPU
O T, = data transfer time CPU-GPU

0 GPU best or CPU best?

123)(78 58
4 5 6 2 10

11 12




Example 1: dot product
N

250 - o TG mem TD mem TC —o—TMax
200 -
2 150 -
E=]
C
.0
5 100 -
O
h
50 -
O 1 I 1 | | 1 | | | I ._\
QQ‘Q\ Q:\’Q\ 0'3’0\ Q\Q\ Q"Q\ Q<\°® Q(\OQ\ Q/\Q\ 03’6\ Qo’Q\ S
NN S O OO A O SN\



Example 2: separable convolution

]
0 Separable convolution (CUDA SDK)

O Apply a convolution filter (kernel) on a large image.
O Separable kernel allows applying

m Horizontal first
®m Vertical second

1 Performance
O T; = execution time on GPU
O T. = execution time on CPU

O Ty = data transfer time

7 7 F 7 77

1 GPU best or CPU best?

/

output

[T T




Example 2: separable convolution

180 -
160 -

o TG mmm TD s TC —e—TMax

5

120 -

Execution time (ms)
|—l
S

o8 8588




Example 3: matrix multiply

.04
0 Matrix multiply

O Compute the product of 2 matrices
0 Performance

O T; = execution time on GPU

O T = execution time on CPU B

O T, = data transfer time CPU-GPU

0 GPU best or CPU best? -




Example 3: matrix multiply

N I —
450 -
400 -
350 -

o TG mm TD mmm TC —o—TMax

2 8 8

150

ol

Execution time (ms)

3

50




Findings
B

0 There are very few GPU-only applications
0 CPU — GPU communication bottleneck.

O Increasing performance of CPUs

0 Optimal partitioning between *PUs is difficult

O Load balancing depends on (platform, application,
dataset)

O Imbalance => performance loss versus original !

0 Programming different platforms with a coherent
model is difficult



Findings
I

0 There are very few GPU-only applications
0 CPU — GPU communication bottleneck.
O Increasing performance of CPUs
0 Optimal partitioning between *PUs is difficult

O Load balancing depends on (platform, application,
dataset)

We need systematic methods (1) to and (2) to

workloads for heterogeneous platforms.




“Togomng



Programming models (PMs)
B

0 Variety of options
O Platform-specific programming models
O Unified programming models

0 Heterogeneous programming models (WiP)

0 Taxonomy: abstraction level and generality

Low level High level
> OpenACC
el p OpenMP4.0 ((@

Heterogeneous Programming Library

OmpSs



Heterogeneous Computing PMs

Higher level abstraction. Domain and/or B
Dedicated APls/pragma’s. High application specific.
Focus on ease of use. level Focus on: productivity

and performance y
OpenACC, OpenMP 4.0 HyGraph (gr rocessing),

OoOmpsSS, StarPy, ... Cashmere (divide and conquer)
Generic HPL GlassWing (mapReduce)
Specific
OpenCL TOTEM (graph processing)

OpenMP+CUDA

A

Domain specific, focus
on performance.
Difficult to use.

The most common atm.
Useful for performance,
difficult to use in practice

Low
level




- Partitioning



Determining the partition

0 Static partitioning (SP) vs. Dynamic partitioning (DP)

GPU




Static vs. dynamic
~o0 4.
0 Static partitioning
O + can be computed before runtime => no overhead
O + can detect GPU-only /CPU-only cases
O + no unnecessary CPU-GPU data transfers
O -- does not work for all applications
0 Dynamic partitioning
O + responds to runtime performance variability
o + works for all applications
O -- incurs (high) runtime scheduling overhead
O -- might introduce (high) CPU-GPU data-transfer overhead
O -- might not work for CPU-only /GPU-only cases



Determining the partition

0 Static partitioning (SP) vs. Dynamic partitioning (DP)
@\lllllll (lll*\;, ~~~~~~~ >

Often sub-ptimal
High applicability

(near-) Optimal
Low applicability

CPU

Multiple




A simple taxonomy
Limited applicability.

Low overhead => high Single
performance kernel
Qilin, Insieme, SKMD, ?
Glinda, ... -
Static Dynamic

Our goal is to extend the use of static partitioning for
as many applications as possible.

Dynamic partitioning is an excellent fallback scenario !




Static partitioning: Glinda™

o Model

O The application workload

O The hardware capabilities
0 The GPU-CPU data transfer

0 Predict the optimal partitioning partitioning

Determine

0 Making the decision in practice
P
o Only-CPU application

o CPU+GPU with the optimal partitioning

*Jie Shen et al., HPCC'14.
“Look before you Leap: Using the Right Hardware.
Resources to Accelerate Applications




Model the partitioning
I
0 Define the optimal (static) partitioning TG + TD = TC
O 3= the fraction of data points assigned to the GPU

A

Ic Te (+Tp)

The right partition point

0 1 l3>




Model the workload

I S

n: the total problem size
w: workload per work-item




Model the workload

n: the total problem size
w: workload per work-item

W

n-1
Ewi =~ the area of the rectangle
i=0

GPU partition i CPU partition

*W (total workload) quantifies how much
work has to be done



Model the hardware
B

|14 W
Tp==f T=—C T,
G C

Two pairs of metfrics
W: total workload size
P: processing throughput (W/second)

O: data-transfer size
Q: data-transfer bandwidth (bytes/second)

1.+1, =1, _
W=W.+W, We K




Determine the partitioning
—

0 Estimating the HW capability ratios by using profiling
0 The ratio of GPU throughput to CPU throughput
0 The ratio of GPU throughput to data transfer bandwidth

/ — B dependent terms

W [Pl 1
Wel | Fe| 14 Fo X O
/-/ Q WG
RGC RGD
CPU kernel execution time vs. GPU data-transfer time vs.

GPU kernel execution time GPU kernel execution time



Determine the partitioning
N

0 Solving  from the equation

Total workload size
N (we_h
HW capability ratios mmp | W. P. |

Data transfer size ’

mm) B predictor

0 There are three 3 predictors (by data transfer type)

.
5 R, p Ree = i X Ry,

1+1><RGD+RGC 1+ R
w

_ RGC
1+R..

p

No data transfer Partial data transfer Full data transfer



Making the decision in practice
N

o From 5 to a practical HW configuration

Calculate Ng; and N

Ng = n xB Ns: GPU partition size
Ne = nx (1-B) Nc: CPU partition size
N<its lower N
bound v
\l' Y N.<its lower N
bound v
Only-CPU lY Round up Ng
Only-GPU l

CPU+GPU
Final Ng and N



Glinda outcome
T

0 A data-parallel application can be transformed to
support heterogeneous computing

0 A decision on the execution of the application
o only on the CPU
o only on the GPU

o CPU+GPU
® And the partitioning point



Success story #1

S
0 Applied Glinda for 7 (single-kernel) applications x
6 datasets per application
0 42 tests

0 38/42 Glinda selected the best configuration
o 14 CPU-only
o 4 CPU+GPU incorrect
0 20 CPU+GPU correct

0 In all cases Glinda gains speed-up over GPU-only
O 1.2x-14.6x speedup



How to use Glinda?¢
B 5

0 Profile the platform to determine Ry, Rgp

0 Use the Glinda solver and determine {3

0 Take the decision: Only-CPU, Only-GPU, CPU+GPU (and
partitioning)
O if needed, apply the partitioning

0 Code preparation
O Parallel implementations for both CPUs and GPUs

O Code templates for partitioning *HPL subborts
O Instrumentation for profiling Glinzz
1 Code reuse

O Single-device code and multi-device code are reusable for
different datasets and HW platforms

*http:/ /hpl.des.udc.es



- Success story #2



Sound ray tracing




Sound ray tracing

0.8
40

o
N

©
o

aircraft | ||
: : < 110

o
(&)

S
HHHH

Launch Angle [deg]

Alttude, km
o

o
w

©
)

l’/,{///,

2 3 4 5

o
=

()
W,
0" '
J R
330 340 350 1

Sound speed, s Relative distance from source, km

(a) (b)

\‘.‘.’,'.‘.‘.’ofo‘




Which hardware?

S
Our application has ...
0 Massive data-parallelism ...
0 No data dependency between rays ...

1 Compute-intensive per ray ...

... clearly, this is a perfect GPU workload !lI



Initial Results
2

180

160

140

® Only GPU

120

100

80
60

Execution time (s)

¥ Only CPU

40

20

WO9(1.3GB)

Only 2.2x performance improvement!
We expected 100x ...




Workload profile
N

Peak
Processing iterations: ~7000

40
07} “ 7000 . .
2]
0.6 20 5 6000 i ”
o5 aircraft | || B 1o§’ "é’ 5000 |
s : 2
R 0 < = 4000 ¢t
< g c
°s .2 3000 |
20 o
02 > 2000 ¢
& 1000 |
-40 (D
! : ‘ H:
330 340 350 2 3 5 O
Sound speed, m/s Relative distance from source, km
(a) (b) (&
Bottom

Processing iterations: ~500



Modeling the imbalanced workload

A

N N |

. . o g :

3 /\/ sorting modeling 8 ®) /.
2 = — > 1=
X S """y " - e

o < pw

= S (a = pw/n)

> 5 = > -

Data point index

flat peak

Data point index Data point index




#Simulation iterations

#Simulation iterations

Glinda for imbalanced workloads

7000

6000
5000 ¢
4000
3000
2000 ¢
1000 ¢

#Simulation iterations

#Simulation iterations

7000
6000

5000
4000
3000
2000
1000




Final results

" Only GPU

Glinda determines the optimal partitioning for any case,

enabling the performance gain for free
CPU+GPU (Auto-tuner)

W9(1.3GB) 62% performance improvement
compared to “Only-GPU”



More complex applications

S
0 State-of-the-art: dynamic partitioning (OmpSs, StarPU)

O Partition the kernels into chunks
o Distribute chunks to *PUs

O Keep data dependencies

Can we extend the use of static partitioning ¢

o (Often) leads to suboptimal performance
® Scheduling policies and chunk size

® Scheduling overhead (taking the decision, data transfer, etc.)

*Jie Shen et al., IEEE TPDS'16.
“Workload Partitioning for Accelerating Applications on Heterogeneous Platforms”



More complex applications
—

1 We combine static and dynamic partitioning

0 We design an application analyzer that chooses the best
performing partitioning strategy for any given application

( I

(1) Implement source (2) Analyze the app App i (3) Select the N (4) Enable the
the app code kernel structure class partitioning strategy partitioning in the code
—_— __—

App Partitioning strategy
classification repository

A )

Implement /get Analyze Select a Enable
the source code application’s class partitioning strategy the partitioning




Application classification

i 5 application classes

kO kO kO

A survey® demonstrates that most applications belong to
classes I-lll, a few to class |V, and none to class V.

; I [ 1l IV V
: SK-One  SK-Loop MK-Seq MK-Loop MK-DAG
Implement /get Analyze Select a Enable
the source code application’s class partitioning strategy the partitioning

*Jie Shen et al., TUDelft technical report,
“A Study of Application Kernel Structure for Data Parallel Applications”



Partitioning strategies: before

S .
Static partitioning:
single-kernel applications

Enable

Implement /get =) - Select a —
the source code partitioning strategy the partitioning



Partitioning strategies: now

Static partitioning: in Glinda
single-kernel + multi-kernel applications

Dynamic partitioning: in OmpSs
Implemer multi-kernel applications (fall-back scenario) 5le
the source code " | partitioning strategy " the partitioning




Partitioning strategies
I

G||nda single-kernel Glinda 2.0: multi-kernel
» SP-Single
KO GPU CPU

— — —— — — —

scheduling policies

/,/’_’___ DP-Dep or DP-Perf scheduled
o REEEIIomo-el 2 RN partitions
] \\\\\ \\\\ GPU
I I I data dependencyI Sa ~a
hai AN
chains CPU thread 0
\\‘
| : e . CPU thread 1 :
OmpSs: dynamic partitioning (fall-back scenario) &




Success story #3 LRCREL

ESK-One SK-Loop MK-Seq MK-Loop MK-DAG

0 6 applications

O 2typel, 2 typell, 1 typelll, and 1 type IV
0 Glinda detects and uses the best partitioning
strategy

o SP-Single for type |, Il
O SP-Unified or SP-Varied for types lll and IV

® Depends on the synchronization model
0 In all cases, Glinda’s static partitioning outperforms
Omp3S’ dynamic partitioning Glinda is the only static

partitioner to support

multi-kernel applications.



Similar results for all 6 applications with

K
Results multiple kernels.

S
0 MK-Loop (STREAM-Loop)
O w/o sync: SP-Unified > DP-Perf >= DP-Dep >
O with sync: SP-Varied > DP-Perf >= DP-Dep > SP-Unified

7133.2
6000

Only-GPU —

Only-CPU 9200702
—. 9000 r SP-Unified [
2} DP-Perf ]
£ DP-Dep
aé 4000  sp-varied T
=
= 3000 |
o
5
3 2000 f
%

“'NC
“' 1000 | { y
0 [ K

STREAM-Loop-w/o STREAM-Loop-w

*Jie Shen et al., ICPP"15.
“Matchmaking Applications and Partitioning Strategies for Efficient Execution on Heterogeneous Platforms”



Heterogeneous Computing today™

Limited applicability. : Not interesting,
Low overhead => high Single given that static &
performance kernel run-time based
systems exist.
Qilin, Insieme, SKMD, Sporadic attempts
Glinda, ... and light runtime
Static systems Dynamic

Only Glinda, for restricted Run-time based systems:
types of DAGs. StarPU
/R OmpSS
a Improved applicability, but High Applicability,
remains limited. Multi-kernel potentially high
Low overhead => high (complex) DAG overhead
\_ performance )

*A.L.Varbanescu et al., FDL'16.
“Heterogeneous Computing with Accelerators: an Overview with Examples.”




- Instead of conclusion ...



to the office

Take Kofyé¢ message [1]

0 Heterogeneous computing works!

0 More resources.

O Specialized resources.

0 Performance gain for free

O Or at the price of some minor code changes

0 Plenty of systems to support you
O Different programming models
O Generic systems for static/dynamic partitioning
o0 Domain-specific/Application-specific models
® Totem, HyGraph — graph processing
® GlassWing — MapReduce

m Cashmere — Divide&Conquer




to the office

Take Kofyé¢ message [2]

You have an application to run¢

1 Now: Choose one solution based on your
application scenario:

O Single-kernel vs. multi-kernel
O Massive parallel vs. Data-dependent
O Single run vs. Multiple run

O Programming model of choice

7 WiP: Framework to combine them all
o Start from: Glinda + OmpSS

® We are still working on it ©



Ultimate goal (WiP)
—

Application

‘ SEMI High
o "‘ Performance
auromare
ot Heterogeneous
ecision -
Computing
(1) Implement source (2) Analyze the app App (3) Select the (4) Enable the
the app code kernel structure class partitioning strategy partitioning in the code
/ /

App Partitioning strategy
classification repository




Open guestions

S
0 Analytical modeling instead of profiling

0 Unified programming models
O Performance portability

0 Extending to more specific types of workloads

0 Performance modeling and prediction
0 What is the right hardware for my software?

0 Understand the links with other fields where
heterogeneous computing is already heavily used:
O Embedded systems, cyber-physical systems, etc.



Heterogeneous computing works!

Ana Lucia Varbanescu — A.L.Varbanescu@uva.nl



