

Francesca Spada – 23/5/08

Sommario

- L'Universo da dieci anni a questa parte...
- Dov'è l'antimateria?
- Origine della materia oscura
- Perché misurare i raggi cosmici nello spazio?
- L'esperimento AMS
 - La radiazione di transizione
 - Come funziona un TRD
- Potenzialità di misura di AMS
- Riposo: tour fotografico

Cosmologia di precisione

Strutture su larga scala (SSDS, ...) Q_m = 0.25 - 0.3

Spettro della radiazione di fondo cosmico di microonde (WMAP, BOOMERanG) Universo piatto ($\Omega_{tot} = 1$) $\Omega_m \approx 0.25 \rightarrow \Omega_A > 0$

SuperNovae di tipo Ia (HUBBLE) Espansione accelerata

Francesca Spada – 23/5/08

Cosmologia di precisione

Dark Energy 73%

Strutture su larga scala (SSDS, ...) $\Omega_m = 0.25 - 0.3$

Spettro della radiazione di fondo cosmico di microonde (WMAP, BOOMERanG) Universo piatto ($\Omega_{tot} = 1$) $\Omega_m \approx 0.25 \rightarrow \Omega_h > 0$

SuperNovae di tipo Ia (HUBBLE) Espansione accelerata

Il modello standard cosmologico

dice che viviamo in un Universo

• piatto, omogeneo ed isotropo su larga scala

 composto di: Radiazione e materia ordinaria → 4.4 %
 elettroni, protoni, neutroni, fotoni e neutrini

Materia oscura fredda→23%di cui si sa poco→73%Energia oscura→73%di cui si sa ancora meno→73%Antimateria<</td>10⁻⁶ volte la materiache dovrebbe esserci ma non si sa dove sia

• con galassie e strutture su larga scala nate da piccolissime fluttuazioni adiabatiche delle distribuzioni di materia ed energia

Dov'è l'antimateria?

L'universo che ci circonda è completamente composto di materia: dalla teoria del big-bang ci si aspetterebbero uguali abbondanze per materia ed antimateria ma non è così (asimmetria barionica)

Si possono immaginare meccanismi per cui l'antimateria sia scomparsa (violazione di CP durante la bariogenesi)

oppure l'antimateria potrebbe essere migrata in altre zone dell'universo e trovarsi in antigalassie ed antistelle lontane

Antimateria nello spettro dei raggi cosmici

Antiparticelle sono prodotte nelle collisioni tra particelle di alta energia e ci giungono come raggi cosmici: $\phi(e^+) / \phi(e^-) \sim 10^{-1} a 10 \text{ GeV}$

 $\phi(p) / \phi(p) \sim 10^{-5} a 10 \text{ GeV}$

Un **nucleo di antielio** ha invece una probabilità bassissima di essere prodotto nelle collisioni

> osservarlo significa un'evidenza dell'esistenza di una zona di antimateria da qualche parte nell'universo

Origine della materia oscura

Vari modelli forniscono buoni candidati per la CDM (WIMPS)

 modelli supersimmetrici che conservano la R-parità
 Particella supersimmetrica più leggera: neutralino x

Dark Enero

modelli extradimensionali
 Particella di Kaluza-Klein più leggera:
 modo n=1 del bosone di gauge di U(1) B⁽¹⁾

Osservabili a LHC?

- è difficile correlarli con la CDM
- parte dello spazio dei paramteri non è accessibile

Però possono esistere **WIMP fossili** nell'universo, sopravvissute dall'epoca in cui la loro densità è diventata troppo bassa perché avvenissero ulteriori annichilazioni (freeze-out), a causa dell'espansione dell'universo.

Ricerca indiretta di CDM = rivelazione dei prodotti di annichilazione di WIMP

annichilazioni $\chi\chi$ possono produrre:

Neutrini

- produzione diretta
- decadimento del W
- decadimenti di Quark pesanti
- decadimento di Pioni carichi

• produzione diretta (fortemente soppressa): $E_e = m_x$

- decadimento del W
- decadimenti di Quark pesanti
- decadimenti di Leptoni e Pioni ca<mark>richi</mark>

Fotoni

- produzione diretta : $E_{y} = m_{x}$
- decadimento di Pioni neutri

$\overline{\mathbf{p}}$

- NO produzione diretta
- adronizzazione : E_h < 🔨 m_x

Francesca Spada – 23/5/08

Canali accessibili ad AMS

Perché studiare i raggi cosmici nello spazio

La presenza di nuclei di antimateria o di prodotti di annichilazione di WIMP si traduce in modifiche dello spettro dei raggi cosmici, a patto di avere una sensibilità sufficiente a rivelarle.

La superficie terrestre è sotto 100 Km di aria, che assorbe tutte le particelle cariche primarie.

⇒ si va nello spazio!

Francesca Spada – 23/5/08

L'esperimento AMS-02

Radiazione di transizione

 Radiazione elettromagnetica prodotta al passaggio di una particella carica e relativistica per l'interfaccia tra due mezzi con diversa costante dielettrica

• il fotone emesso corrisponde alla variazione classica del campo elettrico della particella carica quando cambia l'indice di rifrazione del mezzo

Radiazione di transizione

• Intensità della luce emessa proporzionale al γ della particella (ze = carica elettrica, $\alpha = 1/137$):

con

frequenza di plasma del mezzo(n=densità di elettroni). Polietilene: $\hbar\omega_p = 20 \text{ eV}$ • Numero medio di fotoni irradiati:

$$\langle N \rangle \approx \frac{\alpha z^2 \gamma \hbar \omega_p}{\hbar \langle \omega \rangle}$$

con energia media dei fotoni dell'ordine di 10 KeV per γ = 1000.

• Distribuzione angolare dei fotoni emessi piccata a $\theta = 1/\gamma$

Radiazione di transizione

Per una particella con $\gamma=10^3\,\,\rm si$ ha tipicamente una probabilità di emissione dell'1% ad ogni attraversamento

🗁 bisogna massimizzare il numero di interfacce

Transition Radiation Detector (TRD)

Fleece radiator + straw tubes (Xe:CO₂) separazione e/p > 10² fino a 300 GeV 3D tracking

Francesca Spada – 23/5/08

Transition Radiation Detector (TRD)

Radiatore: layers di fibre di polietilene (fleece)

🕨 aumenta la probabilità di emissione di

Alternati con *straw modules* riempiti con una miscela di gas ad alto Z

20 layers disposti in proiezioni alternate rendono possibile la ricostruzione di tracce tridimensionali

Time of Flight (TOF)

2+2 layers di scintillatori, Δt ~160 ps
Main Trigger
separazione in Z
β con precisione di qualche %

Magnete Superconduttore

Primo magnete superconduttore usato nello spazio

Silicon Tracker

8 layers di microstrip detectors di silicio separazione in Z *R* fino a 2-3 TeV σ_R < 2% per *R* < 10 GeV

Ring Imaging Cherenkov (RICh)

22

Calorimetro Elettromagnetico

Francesca Spada – 23/5/08

9 superlayers di piombo e fibre scintillanti Standalone Trigger rivelazione di e^{\pm} , γ σ_E <3% per E > 10 GeV separazione e/p > 10³ 3D imaging

23

Misura dei flussi dei RC

 $\overline{\mathbf{p}}$

Francesca Spada – 23/5/08

 $e^{+}/p \sim 5 \cdot 10^{-4}$ @ 10 GeV $e^+/e^- \sim 10^{-1}$ @ 10 GeV γ (galactic center)/p ~ 10⁻⁴ @ 10 GeV γ (galactic center)/e⁻ ~ 10⁻² @ 10 GeV \bar{p}/p ~ 10⁻⁴ @ 10 GeV $\bar{p}/e^- \sim 10^{-2}$ @ 10 GeV

Range di energia Particella 0.1 GeV al TeV \mathbf{p} 0.5 a 300 GeV 0.1 GeV al TeV e⁻ 0.1 a 300 GeV e^+ 1 GeV al TeV He 1 GeV al TeV anti-He, ..., C 1 a 10 GeV/nucleone Isotopi leggeri 1 GeV al TeV γ

24

Limiti attesi sull'anti-He

Positroni

L'esperimento HEAT ha rivelato un eccesso nella regione intorno a 10 GeV su un campione di ~10² positroni AMS raccoglierà 10⁵ positroni nella regione < E < 50 GeV, in 3 anni Fondi:

abb.relativafattore di reiezioneprotoni~ 10^4 $10^2 - 10^3$ [TRD] x 10^3 [ECAL] $\geq 10^5$ elettroni~ 10 10^4 [TOF+Tracker]

Positroni

Esempio di segnali di annichilazione di neutralini che osserverà AMS con un fattore di boost che spiega i dati di HEAT:

Riassumendo

- AMS in 3 anni di missione misurerà **simultaneamente** e con grande precisione gli spettri di *positroni, fotoni* e *antiprotoni* nel range GeV-TeV, alla ricerca di un segnale di annichilazione di materia oscura.
 - La misura simultanea di altre quantità fondamentali (spettri di p ed e^- , B/C ratio) contribuirà a distinguere effetti astrofisici da veri segnali di materia oscura.
- AMS può rivelare nuclei di antimateria fino all'anti-ferro fino ad energie del TeV. Se nessun segnale sarà osservato, il limite ottenuto favorirà l'ipotesi di asimmetria barionica.
- Le misure ottenute consentiranno di ridurre il gran numero di modelli attualmente esistenti per materia oscura ed antimateria.

Tour fotografico

Francesca Spada – 23/5/08

