Astrofisica e particelle elementari

aa 2010-11 Lezione 7

• Esperimenti su satellite per radiazione gamma

• Cerenkov in atmosfera, esperimenti a terra per radiazione gamma

Bruno Borgia

Prossime conferenze

 2011 Fermi Symposium 9-12 May 2011 Rome, <u>http://fermi.gsfc.nasa.gov/science/symposium/2011/</u>

 3rd Roma International Conference on Astro-Particle Physics 25-27 May Rome <u>http://ricap11.roma3.infn.it/</u>

FERMI SYMPOSIUM

LUNEDI 9 SESSIONE PLENARIA

9:00-9:20	welcomes
9:20 - 9:45	Fermi Mission Overview
9:45 - 10:10	Fermi and Astrophysics (Steve Shore)*
10:10 - 10:35	Enrico Fermi and High Energy Astrophysics in Italy (G.F. Bignami)*
10:35 - 11:00	break
11:00 - 11:30	Fermi and Fermi (Ugo Amaldi)*
11:30 -11:55	The Second Fermi LAT Catalog: Construction and Contents (Toby Burnett)*
11:55 - 12:15	The Second Fermi LAT Catalog: Caveats and Classifications (Dave Thompson)*
12:15 - 12:30	TeV sources analysis with AGILE (Longo)
12:30 - 14:00	Lunch/Posters
14:00 - 14:30	Galactic diffuse emission: models and interpretation (Jean Marc Casandjian)*
14:30 - 14:45	Fermi's View of the Inner Galaxy (Porter)
14:45 - 15:00	Cosmic-Ray Positron Measurement with the Fermi-LAT Using the Earth's Magnetic Field (Mitthumsiri)
15:00 - 15:15	Results from the PAMELA experiment (Papini)
15:15 - 15:30	Fermi Bubbles: A 10 Kpc Shock From The Galactic Center? (Su)
15:30 - 16:00	break
16:00 - 16:30	Solar Flares and Gamma-ray Observations (Jim Ryan)*
16:30-16:45	Impulsive High-Energy Particle Acceleration in the SOL2010-06-12T00:57 M2 X-ray Flare (Gerry Share)
16:45 - 17:00	Long-lived solar gamma-ray emission during 2011 March 7th to 8th detected by the Fermi LAT
17:00 - 17:15	GBM Observations of Terrestrial Gamma-ray Flashes (Foley)
17:15 - 17:30	AGILE observations of Terrestrial Gamma-ray Flashes (Marisaldi)

Esperimenti nello spazio

CONVERSIONE $\gamma \rightarrow e+e-$

- photons materialize
 into matter-antimatter pairs:
 E_γ --> m_{e+}c² + m_e.c²
- electron and positron carry information about the direction, energy and polarization of the γ-ray

$$\gamma \rightarrow e^+ + e^-$$

High-energy γ-ray telescopes work on the principle of pair production. A photon passing through matter may convert into an electron-positron pair.

$$\gamma + nucleus \rightarrow e^+ + e^- + nucleus$$

The probability of such a conversion taking place is roughly independent of the energy of the incident photon above 1 GeV, and falls off at lower energies. While the full pair-production differential cross section is a complex function of incident γ -ray energy, electron and positron energy, nuclear recoil energy, opening angle, azimuthal angle, and recoil angle [1], several simplifying assumptions give simple estimates of bulk behavior [2]. For a homogeneous material the intensity of the incident γ -ray beam falls off like

$$I = I_0 exp(-\frac{7}{9}t/X_0),$$
 (1)

due to all interactions, where t is the thickness of material and X_0 is the radiation length of the material. Therefore, the probability of a particular γ -ray to interact in the material is

$$P(t) = 1 - exp(-\frac{7}{9}t/X_0). \qquad (2)$$

Pair production offers an opportunity for photons detection. In fact we can estimate the incident γ -ray energy and direction by tracking the resulting e^+e^- pair. The reconstructed energy will be the sum of the e^+ and e^- energies, corrected for energy loss in the instrument, and the incident direction of the γ -ray can be obtained by the momentum-weighted average of the e^+ and e^- directions.

angolo di apertura
$$\theta(e^+ e^-) \approx m_e/k_{\gamma}$$
 6

DISTRIBUZIONE θ_P

ATIC 4 Ianci dal 2000

ATIC must be capable of measuring the incident cosmic ray charge and energy over an energy range of 50 GeV to >100 TeV.

The fully active ATIC calorimeter is composed of 10 layers of Bismuth Germanate (BGO) scintillating crystals and is located on the bottom of the instrument. Above the calorimeter is the target section consisting of three plastic scintillator strip hodoscopes to define the instrument aperture and provide redundant charge and trajectory measurements, as well as layers of inert carbon (between hodoscopes) to provide a volume for the incident particles to interact.

On the top of the detector stack is the highly segmented silicon matrix detector that provides an accurate measure of the incident particle charge. Surrounding the detector stack, electronics bays hold the flight computers, readout electronics, power system boards and other instrument electronics. The total weight of ATIC is about 1,500 kg (3,300 lbs), the total power consumed is less than 350 Watts.

EGRET

COMPTON OBSERVATORY INSTRUMENTS

9

LANCIATO NEL 2007 DA UN RAZZO INDIANO DALLA BASE DI SRIHARIKOTA

SOLAR PANELS

Gamma-ray Imaging Detector (GRID)				
Energy range	30 MeV - 50 GeV			
Field of view	$\sim 2.5~{ m sr}$			
Flux sensitivity ($E > 100 \text{ MeV}$, 5σ in 10^{6} s)	3×10^{-7} (ph cm ⁻² s ⁻¹)			
Angular resolution at 100 MeV (68% cont. radius)	3.5 degrees			
Angular resolution at 400 MeV (68% cont. radius)	1.2 degrees			
Source location accuracy (high Gal. lat., 90% C.L.))	$\sim 15 \text{ arcmin}$			
Energy resolution (at 400 MeV)	$\Delta E/E \sim 1$			
Absolute time resolution	$\sim 2\mu{ m s}$			
Deadtime	$\sim 100-200\mu { m s}$			
Energy range $30 \text{ MeV} - 50 \text{ GeV}$ Field of view $\sim 2.5 \text{ sr}$ Flux sensitivity ($E > 100 \text{ MeV}$, 5σ in 10^8 s) 3×10^{-7} (ph cm ⁻² s ⁻¹)Angular resolution at 100 MeV (68% cont. radius) 3.5 degrees Source location accuracy (high Gal. lat., 90% C.L.)) 1.2 degrees Source location accuracy (high Gal. lat., 90% C.L.)) $\sim 15 \text{ arcmin}$ Energy resolution (at 400 MeV) $\Delta E/E \sim 1$ Absolute time resolution $\sim 2 \mu s$ Deadtime $\sim 100 - 200 \mu s$ Hard X-ray Imaging Detector (Super-AGILE)Energy range $18 - 60 \text{ keV}$ Single (1-dim.) detector FOV (FW at zero sens.) $107^\circ \times 68^\circ$ Combined (2-dim.) detector FOV (FW at zero sens.) $68^\circ \times 68^\circ$ Sensitivity (18-60 keV, 5σ in 1 day) $\sim 15 \text{ mCrab}$ Angular resolution (pixel size) 6 arcmin Source location accuracy (S/N~10) $\sim 1-2 \text{ arcmin}$ Energy resolution (FWHM) $\Delta E \sim 8 \text{ keV}$ Absolute time resolution $\sim 2 \mu s$ Mini-Calorimeter $\sim 2 \mu s$ Energy range $0.35 - 50 \text{ MeV}$ Energy range $0.35 - 50 \text{ MeV}$ Energy range $0.35 - 50 \text{ MeV}$ Energy resolution (at 1.3 MeV) 13% FWHM				
Energy range	18 - 60 keV			
Single (1-dim.) detector FOV (FW at zero sens.)	$107^{\circ} \times 68^{\circ}$			
Combined (2-dim.) detector FOV (FW at zero sens.)	68°×68°			
Sensitivity (18-60 keV, 5σ in 1 day)	$\sim 15~{ m mCrab}$			
Angular resolution (pixel size)	6 arcmin			
Source location accuracy (S/N~10)	\sim 1-2 arcmin			
Energy resolution (FWHM)	$\Delta \mathrm{E}\sim~8~\mathrm{keV}$			
Absolute time resolution	$\sim 2\mu { m s}$			
Mini-Calorimeter				
Energy range	0.35 - 50 MeV			
Energy resolution (at 1.3 MeV)	13% FWHM			
Absolute time resolution	$\sim 3\mu { m s}$			
Deadtime (for each of the 30 CsI bars)	$\sim 20\mu { m s}$			

13

GLAST/FERMI

FERMI Key-Features

- Two GLAST instruments:
 - LAT: 20 MeV >300 GeV
 - GBM: 10 keV 25 MeV
 - Launch: 11 June 2008.
 - 565 km, circular orbit
 - 5-year mission (10-year goal)
 - International Collaboration
- Huge field of view:
 - LAT: 20% of the sky at any instant; in sky survey mode, expose all parts of sky for ~30 minutes every 3 hours.
 - GBM: whole unocculted sky at any time.
- Huge energy range, including largely unexplored band 10 GeV- 100 GeV
- LAT: Large Area Telescope
- GBM: Gamma ray Burst Monitor

FERMI Large Area Telescope

• Precision Si-strip Tracker (TKR)

18 XY tracking planes. 228 mm pitch). High efficiency. Good position resolution (ang. resolution at high energy) 12 x 0.03 X_0 front end => reduce multiple scattering. 4 x 0.18 X_0 back-end => increase sensitivity >1GeV. Tot t ≈ 1 X_0

· Csl Calorimeter(CAL)

Array of 1536 CsI(TI) crystals in 8 layers. Hodoscopic => Cosmic ray rejection.

=> shower leakage correction.

8.5 X0 => Shower max contained <100 GeV

Anticoincidence Detector (ACD)

Segmented (89 plastic scintillator tiles) => minimize self veto.

Reject background of charged cosmic rays;

Electronics System Includes flexible, robust hardware trigger and software filters.

Systems work together to identify and measure the flux of cosmic gamma rays with energy 20 MeV - >300 GeV.

GBM

FERMI

FERMI: RISOLUZIONE E

PAMELA

- Costruito in gran
 parte in Italia
- Lanciato nel 2006 con un razzo russo

PAMELA

PAMELA-MAGNETE

- The magnetic material used is the sintered Nd-Fe-B with a large residual magnetic induction (1.3T). The average field inside the magnet is 0.4 T, with a good homogeneity.
- The combined characteristics of the magnet and of the Si tracker will allow a Maximum Detectable Rigidity (MDR) greater than 740 GV/c.

PAMELA- CALORIMETRO EM

 The total thickness corresponds to 0.9 interaction lengths and 16 radiation lengths.

• The energy resolution for high energy electrons is better than 10% .

AMS

AMS con magnete permanente BL²=0.14 Tm²

Layer 9 comes from moving the ladders at the edge of the acceptance from layer 1. The layer 8 is moved on top of the TRD to become 1N.

Risoluzione dello spettrometro

AMS2

PF (s2, s2) Bracker Bracker

AMS 02

TRD (5.18 Channels)

Direct Photon detection

EM sampling calorimeter

 \Rightarrow High granularity :

-0.5 Molière radius in X-Y

-18 samplings, 0.9 X_0 in depth

why spaghetti?

- ⇒ best longitudinal & lateral shower reconstruction
 - \Rightarrow energy correction
 - \Rightarrow p/e separation
- \Rightarrow best γ angular resolution

Calorimetro Elettromagnetico

1X₀: probabilità 1/e di emettere 1 γ o e⁺e⁻

fotoni \propto E Δ E/E = (a/ $\sqrt{}$ E) + b

31

Alcune prestazioni degli esperimenti

SENSIBILITA`

EGRET(Spark Chamber) VS. GLAST(Silicon Strip Detector)

Area effettiva di AGILE a 100 MeV confrontata con EGRET in funzione della direzione di incidenza del fotone.

Area effettiva in funzione dell'energia del fotone per diversi angoli di incidenza 35

AMS02 Gamma

y01K543c Lamanna

GLAST: PRESTAZIONI

GLAST

One year All-Sky Survey Simulation, $E\gamma > 100 \text{ MeV}$

PULSAR: POLAR CAP

Esperimenti Telescopi Cerenkov

SCIAMI IN ATMOSFERA

Cerenkov and Extensive air shower (EAS) gamma ray telescope concepts

~ 40.000 m^2 , but no anticoincidence shield !

CERENKOV IN ATMOSFERA

- A livello del mare (n 1) = $\varepsilon \approx 3 \ 10^{-4}$.
- Per v \approx c, $\cos\theta = 1/\beta n \approx 23 \text{ mrad} \approx 1.3^{\circ}$
- Energia di soglia per l'effetto Cerenkov: $\cos\theta = 1 = 1/\beta n$; $\beta > 1/n$

E= $\gamma mc^2 = mc^2/(1 - \beta^2)^{1/2}$; $(1 - \beta^2)^{1/2} = (1 - 1/n^2)^{1/2} = [(n^2 - 1)/n^2]^{1/2}$

- $E=mc^2/\sqrt{(2\varepsilon)} \qquad 1/\sqrt{2\varepsilon} \approx 41$
- La soglia per elettroni: E ≈ 21 MeV

muoni: E ≈ 4.4 GeV

- Il massimo di produzione di particelle si ha a 10 km di quota (massimo di produzione Cerenkov).
- L'area illuminata a terra è un ellisse, o un cerchio di raggio r = $h \cdot \theta$ = 10⁴ 23 10⁻³ = 230 m con una superficie di 1.6 10⁵ m².
- Il numero di fotoni prodotti nel visibile, 350-500 nm, da un gamma di 1 TeV è

 $N\gamma \approx 8.2 \ 10^3 \ fotoni/\lambda$

pari a circa 30—50 fotoni/m²in un'area entro ≈100m dall'asse dello sciame.

Whipple: diametro=10m, E > 350 GeV

The Whipple collaboration, which pioneered the Imaging Atmospheric Cherenkov Technique for the detection of very high energy (VHE) gamma rays, is based at the Fred Lawrence Whipple Observatory in Southern Arizona, in the United States. The primary emphasis of the collaboration's research effort is the search for and study of celestial sources of gamma-rays in the energy range of 100 GeV - 10 TeV.

MAGIC

MAGIC

HESS

H.E.S.S. is a next-generation system of Imaging Atmospheric Cherenkov Telescopes for the investigation of cosmic gamma rays in the 100 GeV energy range. The name H.E.S.S. stands for **High Energy Stereoscopic System**, and should also remind of Victor Hess , who received in 1936 the Nobel Prize in Physics for his discovery of cosmic radiation. The acronym also emphasizes two main features of the proposed installation, namely the simultaneous observation of air showers with several (3 to 4) telescopes, under different viewing angles, and the combination of multiple (up to 16) telescopes to a large system to increase the effective detection area for gamma rays. With telescopes of over 100 m² mirror area, the proposed system provides a

- detection threshold of about 40 GeV,
- full spectroscopic capability above 100 GeV, an
- angular resolution for individual showers of 0.1 degrees
- energy resolution of about 20%.

It will allow to explore gamma-ray sources with intensities at a level of a few thousandth parts of the flux of the Crab nebula. H.E.S.S. is located in Namibia, near the Gamsberg, an area well known for its excellent optical quality. The first four H.E.S.S. telescopes (Phase I of the H.E.S.S. project) are under construction and are expected to successively go into operation between early 2002 and 2003

I quattro telescopi della Fase I sono stati completati nel dicembre 2003

HESS

Supernova explosions ...

Le immagini di HESS mostrano chiaramente la shell delle supernove dove hanno origine i gamma

If supernova explosion waves are cosmic accelerators - as long suspected by scientists - they strould be clearly visible in gamma rays. Indeed, H.E.S.S. images resolve the ing-like shock fronts for the first time and show them glowing in high-energy gamma rays. One of the first highlights of the H.E.S.S. observations was the discovery of high-energy gamma rays from two supernova explosion shells, whose 'names' RX J1713.7-3946 and RX J0852.0-4622 refer to their celestial coordinates and the fact that they were first seen as X-ray sources. The H.E.S.S. telescopes were able to resolve the spatial structure of the gamma-ray source; as predicted, gamma rays were found to exactly trace the supernoval shell. This discovery proves conclusively that supernova explosion waves work as cosmic accelerators, at least up to energies of 100 million million electrons volts ('electron volt' is a unit characterising the energies of particles and radiation; visible light has 2 to 4 electron volts).

Background

Our entire Galaxy is permeated by cosmic rays - atomic nuclei accelerated to very high energies. The existence of cosmic rays was discovered by Victor Hess in 1912, almost 100 years ago. Throughout this time, the origin of cosmic rays was heavily debated: Somewhere in our Galaxy must be cosmic particle accelerators capable of creating particle energies many orders of magnitude beyond the biggest man-made accelerators on Earth.

HESS: CENTAUROS A

Spectral distribution of the emission from Centaurus A, from X-rays to the VHE gamma-ray energy band. Archival X-ray and EGRET gamma-ray data are shown in grey, previous VHE upper limits and the tentative early detection in purple.

The High Energy Stereoscopic System (H.E.S.S.)

The "Big Four"

TELESCOPI CERENKOV

Group/ Instrument	Location	Reflector(s) Number \times Aperture	Camera Pixels	Threshold (GeV)	Epoch Beginning
Operating Telescop	es ^a				100
Whipple	Arizona, USA	10 m	331	250	1984
Crimea	Crimea, Ukraine	6×2.4 m	6×37	1000	1985
SHALON	Tien Shen, Russia	4 m	244	1000	1994
CANGAROO	Woomera, Aust.	3.8 m	256	500	1994
HEGRA	La Palma, Sp.	$5 \times 3 m$	5×271	500	1994
CAT	Pyrenées	3m	600	250	1996
Durham/ Mark 6	Narrabri, Aust.	3×7 m	1×109	250	1996
TACTIC	Mt. Abu, India	$4 \times 3.5 \text{ m}$	1×225	300	1997
Seven TA	Utah, USA	7×2 m	7×256	500	1998
STACEE	Sandia, New Mexico	32 ×7 m	32×1	75	1998
CELESTE	Pyrenées, France	40×7 m	40×1	50	1998
Future Telescopes					
CANGAROO II	Woomera, Aust.	7 m	1×512	250	1999
GRAAL/CESA-1	Almeria, Sp.	63×7.1 m	4	100	1999
Solar II	Barstow, CA	96×7.1 m	96×1	20	2002
MAGIC	La Palma, Sp.	17 m	1×800	30	2001
HESS	Namibia	4×10 m	4×700	50	2002
CANGAROO III	Woomera, Aust.	4× 10 m	4×512	75??	2003
VERITAS	Arizona, USA	7×10 m	7×499	75	2004

^a From Catanese & Weekes 1999

OSSERVAZIONE SPAZIO-TERRA

 Gli esperimenti nello spazio e a Terra sono complemetari fra di loro. Nella figura è mostrata la sensibilità al flusso di gamma vs l'energia di GLAST e di HESS. Le linee blu rappresentano rispettivamente il flusso di fotoni dalla Crab Nebula e lo stesso flusso ridotto per un fattore 10 e 100.

RIVELATORI GAMMA

55