SEARCH FOR RARE & EXOTIC HIGGS DECAY AND PRODUCTION: STATUS AND PERSPECTIVES

P. Meridiani

on behalf of the ATLAS and CMS collaborations

Moriond EWK - La Thuile - 17/03/2015

BSM HIGGS PHYSICS

Unveil new physics in the Higgs sector

Measurement of Higgs couplings

probing direct couplings to third generation fermions,W/Z, BSM contribution to ggH and Hyy

Direct searches

- ⇒ Rare SM Higgs decays (e.g 2nd generation fermions, Z/¥*+¥)
- → Decays not allowed in the SM (e.g. LFV H→ μ τ)
- Rare SM production modes (e.g t+H, HH)
- Invisible or quasi-invisible Higgs decays
- Search for extended Higgs sector: additional neutral or charged scalars

DISCLAIMER: Impossible to cover all direct search analyses. Focussing on most recent Runl results/updates

H→µµ & H→ee

H(125) $\rightarrow \mu\mu$ 95% CL exclusion limits

ATLAS: PLB 738 (2015)	>7.0(7.2) x SM
CMS: arXiv:1410.6679	>7.4(6.5) x SM

Together with evidence of $H \rightarrow \tau \tau$, confirm evidence of lepton non-universality

Potential sensitivity in Run 2 to exclude $H \rightarrow \mu\mu$

H→**ee**: CMS put 95% CL exclusion limit on $\sigma \times BR(H(125) \rightarrow ee)=41 fb$

LEPTON FLAVOUR VIOLATING DECAYS

Lepton flavor violating decays can arise in several BSM theories with >1 Higgs doublet Indirect limits on BR($H \rightarrow \mu \tau$)<~10% from τ rare decays search ($\tau \rightarrow 3\mu, \tau \rightarrow \mu \gamma$)

$$\Gamma(\mathrm{H} o \ell^{lpha} \ell^{eta}) = rac{m_{\mathrm{H}}}{8\pi} (|Y_{\ell^{eta} \ell^{lpha}}|^2 + |Y_{\ell^{lpha} \ell^{eta}}|^2)$$

Indirect limit can be obtained reinterpreting $H \rightarrow \tau \tau$ search First direct limit on BR($H \rightarrow \mu \tau$) < 0.75% (2.4 σ excess)

 $\sqrt{|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2} < 3.6 \times 10^{-3}$

$H \rightarrow J/\Psi \chi, \Upsilon \chi$

ATLAS

 $H/Z \rightarrow Q\gamma$

0

Observed

20.3 fb

Expected ($\pm 1, 2\sigma$

 $\sqrt{s} = 8 \text{ TeV}$

Limit on $H(\rightarrow J/\psi \gamma) \sim x 540$ SM 10^{-2} CLs upper limit on Branching Fraction 20.3 fb⁻¹ 20.3 fb⁻¹ 20.3 fb⁻¹ 19.2 fb⁻¹ 10^{-3} 10^{-5} 19.2 fb 10^{-6} J/ψ + γ candidates Events / 4 GeV 22F ATLAS 20 s=8 TeV [Ldt = 19.2 fb 18 16 Data S+B Fit Background

Very small BR BR(H→J/ψγ) ~ 3x10⁻⁶

Proposed to probe Hcc coupling @ HL-LHC

Main background

quarkonium production + fake photon

Multidimensional likelihood fit

 $H \rightarrow Qy \& Z \rightarrow Qy \text{ signal}$ hypotheses are considered

TOP+HIGGS PRODUCTION

Yt indirectly probed by gluon-fusion production

directly measured using ttH

t+H production

in SM destructive interference between tchannel diagrams sensitive to relative sign between $Y_{\rm t}$ and $g_{\rm HWW}$ x13 σ if reversed wrt SM

Re-interpretation of the $ttH(\rightarrow \gamma \gamma)$ search

 $H \rightarrow \gamma \gamma \sim x 2$ if relative sign reversed

Direct search for t+H: multi-lepton analysis from CMS ($H \rightarrow WW, H \rightarrow \tau \tau$)

2 same-sign leptons, 3 leptons final state

NEW

95% CL exclusion limits

CMS HIG-14-001 t+H(→γγ)	4.1(4.1) x σ(k _t =-1)
CMS HIG-14-015 t+H(→bb)	7.6(5.2) x σ(k _t =-1)

Combination to be published soon

Paolo Meridiani

Invisible Higgs Decays

Direct search: exploit associated ZH and VBF production

- boosted Z + MET
- 2 jets with high Mjj + MET

New channels entering into the game with high potential for Run II

mono-jet & tt+MET searches can be reinterpreted as invisible Higgs decay
see C. Doglioni's & D. Pinna's talks

CMS: Eur. Phys. J.C. 74 (2014) VBF+Z(→II)H	>58(44)%
CMS: arxiV:1412.8662 combined (direct+indirect)	>32(29)%

ATLAS: PRL 112, 201802 (2014) Z(→II)H	>75(62)%
ATLAS-CONF-2014-010: combined (direct+indirect)	>37(39)%

BR limit can be Interpreted as DM limit in "Higgs-portal" models

 Better interpretation in the future using recipes from LHC-DMF

ATLAS-CONF-2014-010

Quasi Invisible Higgs Decay

Higgs decays to neutralinos/

Inclusive analysis performed on a special parked dataset y p_T>30 GeV

QUASI INVISIBLE (VBF)

Similarly to invisible Higgs analysis, associated Higgs production can be exploited too

1 γ (p_T>40 GeV), 2 jets (VBF topology), E_T^{MISS}

Main background γ +jets, $W(\rightarrow ev)$ +jets

Istituto Nazionale di Fisica Nucleare

DOUBLE HIGGS PRODUCTION

SM non-resonant HH production too small to be probed in Run I

Non-resonant production can be significantly enhanced if new BSM couplings

HH kinematics can be affected Subject for Run II & beyond

In Run I: resonant HH production from new BSM spin 0 or spin 2 particle

Double Higgs Searches in Run I

Best channel at low m_{нн} mass is yybb allows exclusion of same region of 2HDM space parameter (m_x<2m_t)

4b analysis most sensitive at high mass

non-resonant production ~ m_{HH}=400 GeV

CMS: HIG-13-025 HIG-13-032 HIG-14-013

A→ZH

Neutral CP-odd scalar 2HDM, MSSM...

New result for $A \rightarrow ZH$:

 $Z(\rightarrow H)+H(\rightarrow \tau\tau,\rightarrow bb)$ $Z(\rightarrow_{VV})+H(\rightarrow bb)$

Extend sensitivity in regions not covered by the $A \rightarrow \tau \tau$ search (for $m_A < 2m_t$)

NEW

NEW

Paolo Meridiani

A→ZH

L = 19.7 fb⁻¹ (8 TeV)

- Data

Z+jets Z+b

Z+bb tī (+V) Single Top W+jets

VV MC Stat

Syst \chi m_A=400 GeV 👬 m_A=500 GeV

SM Higgs

 $\mathbf{A} \rightarrow \mathbf{Z}\mathbf{h} \rightarrow \mathbf{I}\mathbf{b}\mathbf{b}$

CMS

Preliminary

10

(I = e, μ)

CMS: $A \rightarrow Z(\rightarrow II)H(\rightarrow bb)$

Multivariate technique (BDT optimized for 3 different mass regions) Model independent + 2HDM interpretation

 $A \rightarrow Z(\rightarrow \parallel) \gamma$

Paolo Meridiani

15

CHARGED HIGGS: $H^{\pm} \rightarrow \tau^{\pm} \nu$

$M_{H^{\pm}}$ < m_{top}: production in tt decay [tt→HbWb]

 $H^{\pm} \rightarrow \tau^{\pm} \nu$ decay is significant also for small tan β (100% for tan β >X) τ +jets final state: hadronic τ decay

almost able to exclude full MSSM phase space for 90<m_{H±}<160 GeV

$M_{H^{\pm}}$ m_{top}: associated production with top [tH(b)]

CMS-HIG-14-020

CHARGED HIGGS

Search for $H^+ \rightarrow tb$ performed for $m_{H^+} > m_t$ in di-lepton + b-jets final state

sensitive to both $H^+ \rightarrow tb \& H^+ \rightarrow \tau v$ partial model independent interpretation provided for BR($H^+ \rightarrow tb$)=1 or BR($H^+ \rightarrow \tau v$)=1

Less sensitive than $H^+ \rightarrow \tau_{had} v$ for MSSM interpretation

Higgs triplet model

 $H^{\pm} \rightarrow W^{\pm}Z$ allowed at tree level

Search performed with VBF production of charged Higgs

2 jets (VBF topology), 2 central jets (W decay), 2 leptons (Z)

NEW

 $H \rightarrow a_1 a_1 \rightarrow 2\mu 2\tau$

Non minimal SUSY models not extensively tested in Run I at LHC NMSSM=MSSM + 1 singlet 3 CP-even, 2 CP-odd, 2 charged scalars CP-odd a1 assumed to be light

$\begin{array}{l} H {\rightarrow} a_1 a_1 {\rightarrow} 2 \mu 2 \tau \text{ offers advantages wrt } 4 \tau \\ \text{despite the smaller BR} \end{array}$

possibility to use $m_{\mu\mu}$ as final observable

Boosted a_1 decays A third lepton (μ ,e) from τ decay

similar issues with boosted a1 decays

search performed in range $3.7 < m_{a1} < 50 \text{ GeV}$

ATLAS: $2\mu 2\tau$ PLOTS NOT YET PUBLIC

NEW

Perspectives for Run 2

Simple rescaling of Higgs & bkg σ 13/8 TeV

Run I sensitivity should be reached for the H~ 10 fb⁻¹ @ 13 TeV 10fb⁻¹ are excepted to be collected in 2015!

ATLAS+CMS are preparing to keep as much as possible similar thresholds for trigger (higher lumi, higher pile-up) & physics object performance

CONCLUSIONS

Extensive searches performed with Run I data for many rare & BSM Higgs decays and production modes

BR for Higgs invisible decays constrained <30%, several other BSM decay modes are significantly constrained

Also extended Higgs sector probed for additional neutral and charged scalar

no luck so far...

Run II offer a great potential to further probe BSM scenarios about 10 fb⁻¹ @ 13 TeV needed to achieve similar sensitivity to Run I

Eagerly awaiting LHC restart!