

CMS Experiment at the LHC, CERN Data recorded: 2015-Nov-02 21:34:00.662277 GMT Run / Event / LS: 260627 / 854678036 / 477

DI-PHOTONS AT CMS

P. Meridiani (INFN Roma) on behalf of the CMS collaboration

16/5/2016

INFN

lstituto Nazionale di Fisica Nucleare

XVIIth International Conference on Calorimetry in Particle Physics May 15 - 20, 2016, Daegu, Korea (South)

INTRODUCTION

After the discovery of a particle compatible with the Higgs boson, the LHC program has 2 clear directions to look for new physics

Indirect: precision measurements of the Higgs properties

Higgs couplings Higgs differential cross-sections

Direct: look for new particles and rare final states

new center of mass-of-mass energy 13 TeV significantly extends reach of Run I

In either of these, di-photon final state plays a major role!

. . .

DI-PHOTON SEARCHES

Di-photon is a clean experimental signature to look for new physics <u>fully reconstructed final state is a golden search mode for new particles</u>

STEP	ISSUES		
1) 2 isolated photons with high p _T	photon identification to reject QCD background		
2) di-photon mass reconstruction $m_{\gamma\gamma} = \sqrt{2E_1E_2(1 - \cos\theta_{12})}$	energy scale and resolution vertex determination in presence of multiple interactions pile-up (PU)	п	
3) signal extraction	background determination: can be estimated directly with a fit to the mass spectrum		

DI-PHOTONS @ CMS: TIMELINE

First di-photon distribution ever shown by CMS (Nov 2009)

First LHC collisions, \sqrt{s} =900 GeV, B=0T

Raw energy used (no energy corrections)

July 2012: Observation of a new boson at mass of 125 GeV (Phys. Lett. B 716 (2012) 30)

Istituto Nazionale di Fisica Nucleare

CMS ECAL

ECAL is THE crucial detector for di-photon analyses

CMS ECAL: Lead tungstate (PbWO₄) homogenous calorimeter <u>designed to discover the Higgs boson in the $\chi\chi$ final state: $\sigma_E/E @ E>100$ GeV ~0.5%</u>

Most critical aspects (constant term of the energy resolution)

in-situ calibration crystal transparency variations

More details in R. Teixeira De Lima's talk

CMS ECAL PERFORMANCE

CMS Preliminary

Relative crystals response to laser light

EB average signal loss ~6%

Energy scale stability at 0.15% level (EB) already in prompt reconstruction

Paolo Meridiani

DI-PHOTON ANALYSES IN CMS

H→yy analysis

After discovery focus on measuring Higgs properties

couplings, mass, differential crosssection

Very optimised analysis: signal hypothesis well known (SM Higgs), systematics controlled with extrapolation from not so far Z→ee

$X \rightarrow \gamma \gamma$ search (500<m_{$\gamma\gamma$}<4500)

Generic search for a high mass di-photon resonance as predicted in several BSM models:

Spin0: e.g. heavy scalar in non minimal Higgs sector

Spin2: e.g. graviton, as predicted in several extra-dimensions model (RS, ADD)

Requires robust analysis tools, since performed over a large mass range

more difficult to extrapolate from $Z \rightarrow ee$

isica Nucleare

COMMON INGREDIENTS FOR DI-PHOTON ANALYSES

Photon reconstruction

- ECAL clustering
- Energy reconstruction and corrections

Photon identification

- Cut based or multivariate
- Vertex identification

Data driven approach to measure energy scale, resolution and efficiency

main control samples: $Z \rightarrow ee$ and $Z \rightarrow lly$

PHOTON RECONSTRUCTION

Crystals in Seed Cluster Other crystals within Supercluster -- Supercluster boundary

ECAL clustering optimised to collect energy radiated from conversions and bremsstrahlung (tracker material up to 2X₀)

dynamic "Supercluster" algorithm recollects additional energy along $\boldsymbol{\varphi}$

material effects are smaller at high p_T (>100 GeV)

Energy estimate from a MC trained multivariate regression

further correct material effects, gaps, PU contamination

can provide also a per photon resolution estimate

More details in J. Bendavid's talk

PHOTON RECONSTRUCTION: PERFORMANCE

20

80

5

80

90

100

 $m_{ee} (GeV)$

Energy scale and resolution measured in data at O(0.1%) level

MC used as a template to fit the data $E_{MC} * Gauss(1 + \Delta P, \Delta \sigma)$ fit performed in bins of η and cluster shape

Linearity checked with boosted $Z \rightarrow ee up to p_T \sim 200 GeV$

deviations within 0.5%(0.7%) in barrel(endcap)

Energy resolution ~1% for uncoverted photons

Energy resolution for $H \rightarrow \gamma \gamma$ photons

90

100

 $m_{ee} (GeV)$

PHOTON IDENTIFICATION

Isolated photons can be distinguished from jets by means of shower shape and isolation variables

- cut-based selection (more robust for high p_T photons) used for high mass search
- multivariate techniques (BDT) to exploit correlation among several variables used in $H \rightarrow \gamma\gamma$ analysis
- **Electron rejection:** veto EM cluster with matching prompt electron, keeping reconstructed conversions

PHOTON ID: PERFORMANCE

Cut based selection adopted in X→yy search has ~90% efficiency for p₁>100 GeV

efficiency checked in data ($Z \rightarrow ee$)

Electron veto efficiency measured with $Z{\rightarrow}\mu\mu\gamma$

Shower shape variables, isolation variables and their correlations are well reproduced by the MC

nice data/MC agreement on the BDT output on Z→ee and Z→ $\mu\mu\gamma$ events

VERTEX IDENTIFICATION

Mass reconstruction depends on the position of the primary vertex

in current pile-up conditions the di-photon production vertex has to be selected among ~20 vertices

Interaction vertex identified using recoiling tracks (and reconstructed conversions when present)

 Σp_T^2 , p_T(yy) vs p_T(tracks), z_{conv}

variables combined in a BDT

probability to assign the correct vertex also determined using a BDT

VERTEX ID: PERFORMANCE

 $- z_{\mu\mu}| < 10 \text{ mm}$

Fraction of Iz^{select}

Data/Simulation

0.8

0.2

1.05

0.95 0.9

Probability to assign the correct vertex depends on the $p_T(\gamma\gamma)$

for $H \rightarrow \gamma \gamma$ efficiency to find correct vertex within 1cm ~80%

for $X \rightarrow \gamma \gamma$ efficiency is ~90%

BDT output validated using $Z \rightarrow \mu \mu$

 γ +jets events used for events with a conversion

Number of vertices

Istituto Nazionale di Fisica Nucleare

Selected H-yy Results

Events split in 11(7 TeV) + 14(8TeV) categories

H→yy can measure each Higgs production mode

special event categories to tag associated production with jets, lepton, MET

CMS H→γγ mass measure is the single most precise (340 MeV)

extrapolation from Z→ee allows to control photon energy scale systematics at 0.1-0.2% (150 MeV)

Istituto Nazionale di Fisica Nucleare

HIGH MASS DI-PHOTON SEARCHES

	Titla	m _x range	interpretation			
		[GeV]	spin0	spin2	narrow width	large width
PLB 750 (2015) 494	Search for diphoton resonances in mass range 150 to 850 GeV in pp collisions at √ s=8 TeV	150-850	\checkmark	\checkmark	\checkmark	\checkmark
EXO-12-045	Search for diphoton resonances in mass range 150 to 850 GeV in pp collisions at √ s=8 TeV	500-3000	X	\checkmark	\checkmark	\checkmark
EXO-15-004	Search for new physics in high mass diphoton events in pp collisions at √ s=13 TeV	500-4500	X	\checkmark	\checkmark	\checkmark
Mar`16 EXO-16-008	Search for new physics in high mass diphoton events in 3.3fb ⁻¹ of pp collisions at √ s=13 TeV and combined interpretation of searches at √ s=8 TeV and √ s=13 TeV	500-4500	✓	\checkmark	✓	\checkmark

New result (EXO-16-008) based on full 13 TeV luminosity 3.3 fb⁻¹

includes 0.6 fb⁻¹ of additional data recorded at 13 TeV at B=0T analysis sensitivity improves by 10%

data reconstruction with improved ECAL inter-calibration completed over winter shutdown

30% improvement in mass resolution for a narrow resonance m_x>500 GeV 10% improvement in analysis sensitivity

Results interpreted in terms of spin0 and spin2 resonances

J=0 gluon fusion production, J=2 RS-graviton 3 widths considered: $\Gamma/m=1.4E-4$, 1.4E-2, 5.6E-2 combination with 8 TeV results

DI-PHOTONS @ OT CHALLENGES

All analysis ingredients had to be re-thought to use data without magnetic field

DI-PHOTONS @ OT CHALLENGES

All analysis ingredients had to be re-thought to use data without magnetic field

No informations on tracks momenta weakens isolation power more difficult to identify correct vertex

Energy spread for conversions/brem reduced

better energy resolution, easier e/y extrapolation shower shape discrimination more powerful

Dedicated channel inter-calibration

Dedicated photon identification photon identification efficiency in EB~80% (less efficient ele-veto)

Dedicated vertex identification

probability to find correct vertex ~60% (only track count can be used)

EVENT SELECTION

~~~ v

SM irreducible *yy* background

Simple and robust selection

- 2 isolated photons, pt>75 GeV
- Split events into (EB-EB,EB-EE)x(3.8T,OT)
- Background composition (measured in data with template fits) dominated by irreducible SM yy production: ~90%

EB-EB categories at 3.8T and 0T

B=3.8T

B=OT

INTERPRETATION

Statistical interpretation from simultaneous fit to m_{yy} distribution 0.5-4.5TeV in the 4 analysis categories (EB-EB,EB-EE)x(3.8T,OT)

Background model: parametric fit to the data with empirical

function $f(m_{\gamma\gamma}) = m_{\gamma\gamma}^{a+b \cdot \log(m_{\gamma\gamma})}$ possible mis-modelling assessed with MC and included as a "bias-term"

Signal model: MC prediction including energy resolution corrections interpolated between several mass points (Spin0,Spin2)x(3 widths) signal hypotheses

UPPER LIMITS AND P-VALUES

Combination of 13 TeV 3.8T and 0T dataset

THE "HOT" TOPIC

Largest excess observed for m_x =760 GeV Γ /m=1.4E-2

Local significance: 2.8-2.9 σ depending on spin hypothesis similar significance for narrow width

Global significance $<1\sigma$

trial factors obtained considering all 6 signal hypotheses (spin x width) in the 500-4500 GeV mass range

Excess mostly driven by EBEB 3.8T category

One event in the 0T dataset compatible with 3.8T excess

COMBINATION WITH 8 TEV

2 analyses performed on 8 TeV data

Combination in all 6 signal hypotheses with 13 TeV

pick most sensitive analysis: 500-850 GeV HIG-14-006, EXO-12-005 otherwise

Cross section ratios:

spin0 (gg \rightarrow S): $\sigma_{13 \text{ TeV}}/\sigma_{8 \text{ TeV}}=4.7$ spin2 (RS): $\sigma_{13 \text{ TeV}}/\sigma_{8 \text{ TeV}}=4.2$

COMBINATION WITH 8 TEV

Compared to single analyses, sensitivity improved by 20-40%

Largest excess observed at mx=750 GeV for narrow width

Local significance: 3.4σ

Global significance 1.6 σ , considering all signal hypotheses in 500-3500 GeV mass range

Evaluated looking at likelihood profile for equivalent $\sigma_{13 \text{ TeV}}$ at 750 GeV for both spin hypotheses

Excess is compatible between the 2 datasets

CONCLUSIONS

- **Di-photon is a robust and powerful final state to look for new physics and explore the Higgs boson properties** relies heavily on excellent CMS ECAL performance
- 13 TeV center-of-mass energy is a new unexplored territory not only limits, a modest excess has been observed at mass ~ 750 GeV
- **10 fb⁻¹ at 13 TeV are required to assess the nature of this excess** statistical fluctuation new physics

OR

S

H-YY EVENT CATEGORIES

Istituto Nazionale di Fisica Nucleare

H-YY EVENT CATEGORIES

Istituto Nazionale di Fisica Nucleare