

Istituto Nazionale di Fisica Nucleare

BSM physics with photons at ATLAS and CMS: Resonances and BSM Higgs

Chiara Rovelli (INFN Roma) on behalf of ATLAS and CMS Collaborations

BSM physics at LHC

The discovery of a SM-like Higgs Boson completed the Standard Model

Strong indications that SM is a low-energy expression of a more general theory

- Direct evidence from observation (dark matter, matter-antimatter...)
- Conceptual problems

Huge number of searches ongoing at LHC

BSM physics at LHC

The discovery of a SM-like Higgs Boson completed the Standard Model

Strong indications that SM is a low-energy expression of a more general theory

- Direct evidence from observation (dark matter, matter-antimatter...)
- Conceptual problems

Huge number of searches ongoing at LHC

2HDM extra dimensions (resonance hump)
Dark Matter
SUSY
Contact Interactions
BSM Higgs sector

More on other topics in B.Schumm's talk

Probing new physics with photons

Photons give a clear experimental signature

Striking signature in the detectors:

- Isolated energy deposit in the electromagnetic calorimeter
- No track associated in the inner detector
- Distinctive shape of the energy deposits

Very good energy resolution

High purity and large reconstruction efficiency

• Can be controlled with data-driven techniques

Relatively low SM backgrounds

- Almost soft QCD production at LHC
- Fake photons from misidentified objects

Perfect "tool" to search for new physics

Traceler FCAL

Details in F.Couderc's and K. Brendlinger's yesterday talks

Searches for resonances

Many results available, only selected items here

Resonances at LHC

Generic prediction of several BSM theories

Spin-2: extra-dimensions (e.g RS Gravitons) Spin-1: W', Z' as in compositeness models Spin-0: 2HDM (SM extensions with non-minimal Higgs sectors)

Where photons?

Bosonic decay channels

• X -> γγ, X-> Vγ, X->VV

Fermionic decay searches can profit from ISR photons

• E.g. X -> qq + γ

Bump searches

- Background understanding
- Objects reconstruction to maximize signal efficiency (e.g. pileup mitigation, isolation)
 - requiring a very good detector understanding

ATLAS and CMS approaches leading to similar sensitivities

High mass yy resonances

Lots of interest in 2015-16 due to the (in)famous excess around 750 GeV

Phys. Rev. D 98 (2018) 092001

Events with 2 high p_T isolated photons, selected by di-photon triggers

Dedicated photon selection

• tuned to be flat vs di-photon mass

BDT-based vertex reconstruction

• ~90% efficient in selecting the good vertex

Events categorization to enhance analysis sensitivity

Main backgrounds directly fitted from data:

- non-resonant γγ
- mis-identified jets (γ+jet, jet+jet)

High mass X->γγ: Results

Phys. Rev. D 98 (2018) 092001 Phys. Lett. B 775 (2017) 105

Both ATLAS and CMS 2016 data not showing any excess

Interpretation: Spin0 (extended Higgs sector) and Spin2 resonances (RS Graviton)

Comparable sensitivities for the experiments

CMS (2016 data):

- m_{G} < 2.3-4.6 TeV excluded @95% CL for k = [0.01-0.2]

ATLAS (2015 + 2016 data):

- m_{g} < 4.1 TeV excluded @95% CL for k = 0.1
- Limits on $\sigma xBR @95\%CL$: Spin0: 11.4-0.1 fb for $m_{\chi} = [200, 2700] \text{ GeV}$ Spin2: 4.6-0.1 fb for $m_{G} = [500, 5000] \text{ GeV}$

Low mass yy resonances

ATLAS-CONF-2018-025

Focus on narrow X with $m_{\chi} < 110 \text{ GeV}$

Similar strategy as for the high mass region

Main differences in background estimate:

- Z/γ* -> ee as additional background
 - electrons faking photons
 - shape and normalization constrained with data-driven e->γ measurement
- Impact of trigger thresholds at the low bound

Events categorization based on $\boldsymbol{\gamma}$ conversions

• Different DY contamination

Main uncertainties: statistical + background fit

Low mass X -> γγ: Results

CMS: Phys. Lett. B 793 (2019) 320-347 ATLAS: ATLAS-CONF-2018-025

Both ATLAS and CMS focused on an additional SM-like Higgs boson

ATLAS (2015+2016+2017 data):

No significant excess observed

CMS (combined 2012 + 2016 data):

Maximum local (global) significance 2.8σ (1.3σ) at 95.3 GeV

	_ (CMS 19.7 fb ⁻¹ (8 TeV) + 35.9 fb ⁻¹ (13 TeV)	6					
alue	ר 10 ⁻¹		1σ 2σ	value	1			
ñ d	10 ⁻²		20	٩	$ \land \frown $	$ \land \land$	\bigwedge	_ 0σ
cal	10 ⁻³		3σ	oca	F / \/	\sim		-
<u>с</u>	10 ⁻⁴		4 0	Ц		$ \wedge$	/	10
	10 ⁻⁵		10			V	/	
	10 ⁻⁶		5 0					
	10 ⁻⁷		0.0					-
	10 ⁻⁸	$= H \rightarrow \gamma \gamma \qquad \qquad$			-			2σ -
	10 ⁻⁹		6σ		ATLAS Dralimin			
1	0 ⁻¹⁰	Observed 0 TeV Observed 13 TeV			n^{-2} \sqrt{e} 13 TeV 80 fb ⁻¹	ary	Ohaarru	
1	0 ⁻¹¹	Observed 8 TeV + 13 TeV = Expected 8 TeV =			$X \rightarrow \gamma \gamma$		- Observe	eo =
1	0 ⁻¹²	Expected 13 TeV ``∃ Expected 8 TeV + 13 TeV						
1	0^{-13}				70 80	90	100	110
•	- 8	0 85 90 95 100 105 11	0				n	n, [GeV]
		m _H (GeV)						X

	mX [GeV]	UL@95%CL σ x BR
ATLAS Run2	65-110	30-101 fb
CMS Run1	80-110	31-129 fb
CMS Run2	70-110	26-161 fb

X -> Vγ Resonances

JHEP 09 (2018) 148 Phys. Rec. Lett. 122 (2019) 081804 JHEP 10 (2017) 112 Phys. Rev. D 98 (2018) 032015

Variety of X -> Z/W/H+γ searches performed by ATLAS and CMS on 2015 + 2016 datasets

Leptonic channels Z-> II, I = electron or μ Good resolution, important at low m_x

Hadronic channels Large-radius jet, light or b-quarks Large BR, important at high m_x

X -> Vγ Resonances

JHEP 09 (2018) 148 Phys. Rec. Lett. 122 (2019) 081804 JHEP 10 (2017) 112 Phys. Rev. D 98 (2018) 032015

Variety of X -> Z/W/H+γ searches performed by ATLAS and CMS on 2015 + 2016 datasets

Leptonic channels Z-> II, I = electron or μ Good resolution, important at low m_x

Hadronic channels Large-radius jet, light or b-quarks Large BR, important at high m_x

Phys. Rev. D 98 (2018) 032015

Hadron decays of Z, W, H Main backgrounds: γ +jets, W/Z (W, Z -> jj) + γ , ttbar+ γ Selection on m_v, fit to m_{j γ} Events classification to enhance sensitivity

No significant excess observed Limits set on a variety of spin 0/1/2 models

Low mass X -> qq + γ

Phys. Lett. B 788 (2019) 316 CMS-EXO-17-027

Extensive searches for X->qq (dijets) performed at ATLAS and CMS

Large multi-jet background Tight online requirements

Reduced sensitivity to low masses ($m_{\chi} < ~ 1 TeV$)

Effort to cover the whole mass range exploring new ideas

• Exploit ISR jet / photon

Lower trigger thresholds

Lower background

CMS-EXO-17-027

Search for a light Z', $10 < m_{z'} < 125 \text{ GeV}$

Boosted event topology, Z' recoiling against γ

- q/qbar merged in a single large radius jet
- jet sub-structure to reduce backgrounds

Events selected by single photon trigger

• Lower masses accessible

No excess found: limits set

Summary of X -> qq searches

X -> HH Resonances

JHEP 11 (2018) 040 Eur. Phys. J. C 78 (2018) 1007 Phys. Lett. B 788 (2018) 7

SM HH production cross section very small

• 34fb, ~1000 times smaller than for single Higgs

Several BSM models predict heavy resonances decaying to HH

	bb	WW	π	ZZ	γγ
bb	33%				
WW	25%	4.6%			
π	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.029%	0.013%	0.0053%

Channels with H->γγ are powerful: small branching ratio BUT clean signal extraction

• Thanks to narrow H->γγ peak

H->γγbb (CMS/ATLAS)2 photons and 2 jets in final stateDiscriminating variables: mγγ, mjj, mγγjj

H->γγWW (ATLAS) 2 photons, 1e/μ, 2 jets (WW->lvqq) Less sensitive

Main backgrounds: γγ continuum, single Higgs

X->HH->bbγγ results

bbyγ final state: important role in the combination No significant excess observed

CMS UL @95%CL on σ x BR(pp->X->HH-> $\gamma\gamma$ bb): 0.23-4.2 fb (m_x=250-750 GeV) depending on m_x and spin

ATLAS UL @95%CL on σ x BR(pp->X->HH): 0.12-1.14 pb (m_x=260-1000 GeV) for narrow spin-0

BSM Higgs

Many results available, only selected items here

Higgs boson = key for BSM physics?

Higgs boson discovery opened the way to new searches for BSM

Exotic h(125) decays

SM Higgs has narrow width (~4 MeV): current limits allow for additional contributions *Indirect evidence for BSM*: deviations from SM couplings *Direct evidence for BSM*: observation of Higgs BSM decays

- Higgs -> invisible
- Higgs -> light (pseudo)scalars (H -> aa)
- Flavour violating decays

Exotic h(125) productions

- From new particles decay
- Originated in SUSY chains
-

More Higgses?

- Additional EW singlet mixing with SM-h
- Charged Higgs
- ...

Higgs boson = key for BSM physics?

Higgs boson discovery opened the way to new searches for new physics

Exotic h(125) decays

SM Higgs has narrow width (~4 MeV): current limits allow for additional contributions

Indirect evidence for BSM: deviations from SM couplings

Direct evidence for BSM: observation of Higgs BSM decays

Higgs -> invisible

Higgs -> light (pseudo)scalars (H -> aa)

Flavour violating decays

Exotic h(125) productions

- From new particles decays
- Originated in SUSY chains

More on other topics in B.Schumm's talk (or final states with photons not relevant)

More Higgses?

- Additional EW singlet mixing with SM-h
- Charged Higgs

• ...

Higgs decays to SM particles

Important to look at all possible decay modes

Very rare decays:

- Excess would indicate BSM physics
- Precision limited, slow increase with data

No surprise so far

ATLAS, *Phys. Lett. B* 786 (2018) 134 Study of H -> J/ ψ γ decay Probe of charm and bottom Yukava coupling Focus on clean di- μ final state 95%CL UL on BR ~ 10⁻⁴

CMS, JHEP 11 (2018) 152

Study of H -> II γ Focus on clean di- μ , di-ele final states Observed (expected) 95%CL UL on σ x BR = 3.9 (2.0) x SM

channel	BR (SM)
Η -> Ζγ -> ΙΙγ	1.01 x 10 ⁻⁴
Η -> J/ψ γ	3.0 x 10 ⁻⁶
Η -> Υγ	~5 x 10 ⁻⁹

Higgs exotic decays: h->aa

ATLAS-PHYS-PUB-2018-045 Phys. Lett. B 782 (2018) 750

SM:single Higgs doublet $\Phi => 1$ Higgs boson h2HDM:two $\Phi 1 \Phi 2$ => 5 Higgs bosons h, H0, A, H+, H-

Interesting scenarios with extra singlet (2HDM+S) a with $m_a < m_h$

• Significant h->aa possible

ATLAS Preliminary

Run 1: $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹ **Run 2**: $\sqrt{s} = 13$ TeV, 36.1 fb⁻¹

2HDM+S Type-I

Final states with photons explored by ATLAS: H->aa->4γ (Run1) H->aa->2γ2b (Run2)

Complementary searches Become relevant when fermionic decays suppressed

Summary

Photons are a primary ingredient in searches for BSM physics thanks to the clean signature in the detector

Many searches for resonances ongoing in final states with photons at ATLAS and CMS

The Higgs Boson discovery opened additional paths to search for new physics, in an extended Higgs sector

So far all observations are compatible with the SM expectations Still O (100fb-1) of data to be analysed for many channels. Many more results coming with full Run2 dataset. Stay tuned!