

The CMS Trigger System

Nadir Daci Sapienza Universita e INFN, Roma I

On behalf of the CMS Collaboration

Nadir DACI - QCD 17 Conference

Triggering at the LHC

Particle identification in CMS

A tale of two levels

$\mathbf{\hat{v}}$	Rejecting jets using HCAL vs ECAL energy (H/E) and cluster shape veto	Th	resholds ı lumi (15	used at record .3 Hz/nb)
$\Leftrightarrow \land \land$	L1 electron/photon strategy: OR (3 algos : non-isolated, isolated, isolated + eta-restricted) Using tighter identification but looser transverse energy (E_T) cuts: { X ; X- 2 ; X- 4 } 2017 Improvements: reoptimization of the isolation relaxation (high E) and the H/E cut		2016: 2017: 20 Hz/nb	X = 40 GeV X = 36 GeV : X = 40 GeV ?

Level-1 Taus

Level-1 VBF

- ♦ VBF production mode very sensitive for searches such as Higgs ditau and invisible final states
- > Level-1 trigger allows the calculation of complex variables such as invariant mass since 2017
- Rate scan in the online {m_{JJ}; leading jet E_T} 2D plane performed in special 2016 high PU data
- > Thresholds considered at 2e34: m_{JJ} > 620 GeV & leading jet E_T > 110 GeV \rightarrow 7.3 kHz
- ➤ Gain in signal acceptance for VBF H→ditau events wrt L1 ditau trigger: 58%

Level-1 Energy sums

- ✤ Energy sum triggers widely used in analyses based on hadronic final states
 - \Rightarrow dijet resonances, dark matter in final states with MET (+jets, +lepton, +photon...) etc
- > Challenge: mitigate the MET rates due to pile-up and detector noise
- > For **2017**: **HTT** restricted to **tracker acceptance** + **MET** cross-triggers with **Jets** or **HT**

♦ Thresholds			
2016 peak lumi: HTT > 300 GeV	MET > 100 GeV		
2017 same lumi: HTT > 380 GeV	MET > 120 GeV		
2017 20 Hz/nb :HTT > 450 GeV	MET > 150 GeV		

8

Nadir DACI - QCD 17 Conference

Level-1 Muons

High-Level Trigger

- ∻ Additional strategies to afford larger rates
- Scouting: saving only trigger objects

 \diamond

∻

Parking: record extra data, perform reco later

Nadir DACI - QCD 17 Conference

2500

processing time [ms]

3000

1000

500

10

High-Level Trigger: Leptons

Muon η

Muon P_T [GeV]

11

High-Level Trigger: Jets

- ♦ Jet thresholds in 2016: Single Jet 450 GeV \Rightarrow 95% eff @ 520 GeV
- ♦ **Hadronic Ditau** threshold: 35 GeV \Rightarrow >80% efficient @ pT>50
- ♦ B-tagging: fake rate (uds) vs efficiency (b) for online and offline
- > Online b-tagging provids a 70% efficiency for a 5% fake rate
- Once events are triggered, there is room for improvement @ offline level

High-Level Trigger: Energy Sums

High-Level Trigger: Pixel upgrade

- Cellular Automaton: track seeding algorithm
- Creates hit doublets in adjacent layers
- Joins compatible doublets to form triplets then quadruplets
- 5 times faster than old algo (triplet propagation)
- Efficiency: similar in barrel, 50% gain in endcap
- Fake rate: divided by 4

Nadir DACI - QCD 17 Conference

Conclusion

- Upgraded Level-1 trigger system commissionned in 2016
- Demonstrated excellent performances during the 2016 data taking
- Some improvements deployed from 2016 to 2017: E/gamma isolation and H/E cuts; Tau ETdependent shape identification; HTT eta restriction on input jets; Muons using RPC in endcap and better eta/phi correlations (project coordinates to vertex)
- In 2017, CMS exploits further the features of the upgraded system: invariant mass, more evolved correlations, VBF dijet algorithm.
- ♦ Upgraded detectors being exploited at High-Level Trigger:
- HCAL endcap upgrade prototype being commissioned; HCAL forward upgraded readout
- > Phase-1 **pixel** upgrade \Rightarrow commissioning progressing
- Reconstruction algorithms at HLT were adapted accordingly: tracking, muon reconstruction, electron pixel matching
- ⇒ reduce CPU **timing** at high **pile-up** while improving **efficiencies** and reducing **fake** rates

BACKUP

- L1 electron/photon strategy: OR (3 algos: non-isolated, isolated, isolated + eta-restricted)
- Using tighter identification but looser transverse energy (E_T) cuts: {X ; X-2 ; X-4}
- 2017 Improvements: reoptimization of the isolation relaxation (high E_T)
- Right plot: efficiency of the OR of the three algorithms
- Comparing thresholds giving the same rate (at PU=24) using 2016 and 2017 configurations

Level-1 taus

Level-1 taus

Level-1 taus

Level-1 Jets

