

Searches for dark matter mediators at LHC

Francesco Santanastasio

"Sapienza" University of Rome and INFN

on behalf of the CMS and ATLAS Collaborations

Collider Physics and the Cosmos Galileo Galilei Institute, 9-13 October 2017, Arcetri (Italy)

Dark Matter (DM) in Cosmology

- Cosmological observations support that 85% of the matter component of the universe is dark matter (DM)
- Key properties of DM particles
 - massive (gravitational interaction)
 - dark (no color and no electric charge)
 - stable (or very long-lived)
 - weakly interacting with SM particles
- The hunt of Dark Matter particles is an interdisciplinary effort
 - from cosmology to particle physics
 - potentially accessible by different experiments
 - potentially accessible by precision standard model measurements

Dark Matter Detection

Dark Matter Models for Collider Searches

DM Searches at LHC

- Mono-X searches
 - DM recoils against initial state radiation (jet, photon, Z/W ...)
 - see Adish Vartak's talk tomorrow

| Missing energy (MET)

- Mediator searches
 - full reconstruction of mediator mass from decay products (bump search)
 - minimal model:
 dijet final state

Dijet Analyses

- High-mass (M>1.5 TeV)
 - resonance produced almost at rest
 - trigger on high p_T jets from resonance decay
- Intermediate-mass (0.5<M<1.5 TeV)
 - lower jet p_T trigger thresholds
 - analysis with reduced data format
 - "data scouting" for CMS
 - "trigger-level analysis" for ATLAS
- Low-mass (0.2<M<0.5 TeV)
 - trigger on high p_T photon or jet from initial state radiation (ISR)
- Very low-mass (M<0.2 TeV)
 - decay products of boosted Z` within single wide-jet + ISR jet

Kinematics of Dijet Resonances

- $\cos \theta^* = \tanh y^* = \tanh \left[(\eta_{jet1} \eta_{jet2})/2 \right]$
- Reconstructed mass of dijet system (m_{jj})
 - related to resonance mass

- Scattering angle (θ*) in resonance rest frame
 - related to resonance spin
 - require small $\cos\theta^*$ to suppress QCD t-channel

Trigger Challenge

- Experimental challenge
 - large dijet cross section at LHC
 - limited resources to process and store data (total CMS/ATLAS budget ~1KHz)
- About 10 Hz allocated for dijet searches
 - need to apply tight trigger selection
 - $H_T = \sum_{jets} p_T^i > 800 \text{GeV}$
 - $p_T(\text{single jet}) > 500 \text{GeV}$
- Search for resonances above minimum dijet mass where trigger is fully efficient
 - avoid trigger turn-on since difficult to model it with sufficient statistical precision

$\sigma_{jet}(p_T^{jet} > 100 GeV)$	10 ³ nb
Inst. Luminosity	10 ³⁴ cm ⁻² s ⁻¹
Event Rate	10 KHz

Dijet Mass Spectrum

- Search resonances with mass >1.5 TeV
 - dijet mass resolution $\sim 10\%$
 - look for bumps in the mass spectrum
- Background estimated by fit to data using smoothly falling function
 - do not rely on QCD simulation

- Sliding window fit technique (ATLAS)
 - more robust than global fit with higher integrated luminosity expected in future
- No sign of new resonances

Associated Production (ISR)		Inclusive Analysis				
Boosted dijet	Re	solved jets	Trigger Level	Analysis	Standard T	riggers
1 ISR jet +1 widejet	1 ISR	jet or $\gamma + 2$ jets	2 jets	5	2 jets	
q g_q Z^{*} g_q q		or jet)			q g q q	
$50 C_{\rm eV}$ 20	$0 \subset V$	500	$C \circ V$	1.5	$T_{a}V$	
20	UGEV	Resonance	mass ranges	1.3	IEV	0.0 16

- High-mass search with the standard triggers starts at ~1.5 TeV
- In order to go to lower resonance masses we **need different trigger strategy**
 - trigger level analysis
 - initial state radiation (ISR) trigger

"Data Scouting" (CMS), "Trigger Level Analysis" (ATLAS)

- Trigger strategy to probe lower resonance masses
 - lower trigger thresholds —> higher event rate
 - store reduce event content —> lower event size

	Main data stream	Data scouting
Trigger selection	All triggers (<i>ex. for CMS dijet</i> H _T >900 GeV)	Low-p⊤ jet triggers (H⊤>250 GeV)
Event rate	~1 KHz	~4 KHz
Event content	FULL (RAW data + offline reconstruction)	REDUCED (store only jets reconstructed at trigger level)
Event size	~1 MB/event	~2-3 KB/event
Bandwidth	~1 GB/s	~0.01 GB/s

* Example from CMS Data Scouting, similar for ATLAS

Dijet Analysis at Trigger Level

- Explore intermediate resonance mass range
 - 500 GeV < mass < 1500 GeV
- **Calorimeter jets at trigger level** (calo scouting)
 - fast online reconstruction (no tracking) allows lowest possible jet trigger thresholds
 - dijet mass resolution $\sim 20\%$ worse compared to offline reconstructed jets
- Background estimated by fit to data using smoothly falling function
 - same strategy of high-mass search

$$\frac{d\sigma}{dm_{jj}} = \frac{P_o(1-x)^{P_1}}{x^{P_2+P_s \ell m(x)}} \qquad X = \frac{M_{jj}}{13000}$$

• No sign of new resonances

- Available jet triggers not efficient for low-mass resonances (mass <500 GeV) produced at rest
 - due to low energy of their decay products
- Search for dijet resonances produced in association with a high-p_T initial state radiation (ISR)
 - trigger on ISR object (jet or photon)
 - search for bump in m_{jj} spectrum of other 2 jets
- ATLAS analysis with ISR photon
 - trigger: pT photon > 150 GeV
 - extend search down to 200 GeV resonance mass
 - no sign of new resonances

Boosted Resonances

- Very-low mass resonances (<200 GeV) produced with large Lorentz boost
 - decay products collimated and reconstructed in single wide-jet
- Study substructure of wide-jet
 - jet mass (removing soft radiation) \Rightarrow resonance mass
 - observables to identify two-prong jet substructure (n-subjettiness, generalized energy correlation functions, ...)

QCD background

Boosted Dijet Analysis

- CMS analysis strategy
 - trigger on single jet pT>500 GeV (anti-kt, R=0.8)
 - tight requirement on two-prong substructure of wide-jet
 - bump search in mass spectrum of the wide-jet
- QCD background estimated from data in signaldepleted control region, created by inverting the substructure selection

-
$$n_{\text{pass}}^{\text{QCD}}(m_{\text{SD}}, p_{\text{T}}) = R_{\text{p/f}}(\rho(m_{\text{SD}}, p_{\text{T}}), p_{\text{T}}) n_{\text{fail}}^{\text{QCD}}(m_{\text{SD}}, p_{\text{T}})$$

- transfer factor R = smooth function of jet mass and p_T
- Signal extracted from simultaneous fit to signal and control regions in 5 different jet p_T bins (from 500 to 1000 GeV)
- W/Z boson peak well reconstructed
 - standard candle to validate search for new resonances

16

- Small fluctuation at resonance mass of 115 GeV
 - local significance = 2.9σ
 - global significance = 2.2σ
 - not sensitive to SM Higgs signal in this inclusive dijet channel
- Upper limits on coupling of Z` to quarks vs resonance mass
 - probe new mass and coupling regions, not explored by previous experiments

35.9 fb⁻¹ (13 TeV)

CMS

Results of Boosted Dijet Analysis

Summary of Dijet Searches

- Set limits on leptophobic $Z \rightarrow qq$ benchmark model
 - 100% of decays to jets
 - limits valid for narrow resonance $(g_q \approx 0.5)$
- ATLAS+CMS covers a wide mass range
 - from 50 GeV to multi-TeV

$$\mathcal{L}_{\text{axial-vector}} = g_q \sum_q Z'_\mu \bar{q} \gamma^\mu \gamma_5 q$$

$$\Gamma_{\text{axial-vector}}^{q\bar{q}} = \frac{g_q^2 M_{\text{med}}}{4\pi} \left(1 - 4\frac{m_q^2}{M_{\text{med}}^2}\right)^{\frac{3}{2}}$$

m_{z'} [GeV]

Dark Matter Interpretation

- Dijet and mono-X searches exclude regions in DM-mass vs mediator-mass plane
- $m_{DM} < M_{med} / 2$
 - mediator decays to DM → constraints from mono-X analyses
 - branching ratio to dijet increases with DM mass
- $m_{DM} > M_{med} / 2$
 - on-shell mediator cannot decay to DM → no constraints from mono-X searches
 - 100% decays to jets → dijet limits independent on DM mass

Exclusion in Different Coupling Scenarios

 $E_{\tau}^{miss} + X$ **Exclusion depends on coupling assumptions** Diiet ^{iss}+γ **t**s = 13 TeV, 36.1 fb⁻¹ Dijet 8 TeV 1s = 8 TeV, 20.3 fb-1 Phys. Rev. D. 91 052007 (2015) Eur. Phys. J. C 77 (2017) 393 **g**_q << **g**_{DM}: dijet and mono-jet complementary E_T^{miss}+jet **√**s = 13 TeV, 36.1 fb⁻¹ Dijet **v**s = 13 TeV, 37.0 fb⁻¹ ATLAS-CONF-2017-060 arXiv:1703.09127 [hep-ex] Dijet TLA Vs = 13 TeV, 3.4 fb⁻¹ Dilepton $\sigma_{\rm MET+X} \propto \frac{g_q^2 \cdot g_{DM}^2}{\Gamma_{tot}} \qquad \sigma_{\rm dijet} \propto \frac{g_q^4}{\Gamma_{tot}}$ ATLAS-CONF-2016-030 **I**s = 13 TeV, 36.1 fb⁻¹ Dijet + ISR **v**s = 13 TeV, 15.5 fb⁻¹ ATLAS-CONF-2016-070 CEBN-EP-2017-119 $g_q = 0.25$, $g_{\rm DM} = 1$, $g_\ell = 0$ $g_q = 0.1$, $g_{DM} = 1$, $g_\ell = 0.01$ ATLAS Preliminary July 2017 **DM Simplified Model Exclusions** ATLAS Preliminary July 2017 DM Simplified Model Exclusions 1.2 1.2 **DM Mass** [TeV] **DM Mass** [TeV] **EXOT** summary 0.8 0.8 ATLAS * vertical bands in 0.6 0.6 Dijet dijet limits due to stat. fluctuations in Dijet 0.4 lepton 0.4 observed limits 0.2 0.2 Vector mediator, Dirac DM Vector mediator, Dirac DM $g_{_{II}} = 0.1, g_{_{II}} = 0.01, g_{_{III}} = 1$ $g_{1} = 0.25, g_{1} = 0, g_{1} = 1$ All limits at 95% CL All limits at 95% CL 0.5 1.5 2 2.5 0.5 3 0 1.5 2 2.5 3 1 Mediator Mass [TeV] Mediator Mass [TeV]

Dilepton Final State

$$\Gamma_{\text{axial-vector}}^{\ell\bar{\ell}} = \frac{g_{\ell}^2 M_{\text{med}}}{12\pi} \left(1 - 4\frac{m_{\ell}^2}{M_{\text{med}}^2}\right)^{3/2}$$

- DM mediators may also couple to leptons
- Search for new physics in **dilepton mass spectrum**
 - consider both ee and $\mu\mu$ final state
- Dominant Drell-Yan background estimated from NLO simulation
 - NNLO QCD and EW corrections applied as function of dilepton mass
- Data in very good agreement with SM prediction
 - set strong exclusion in DM-mediator mass plane

Direct Detection (DD) experiments search for the recoil of a nucleus scattering off a DM

particle traversing the detector

- scattering cross sections depends on mediator mass and couplings
- Collider limits translated in cross section vs DM mass plane
 - collider searches more sensitivity at low DM mass (m_{DM} < 10 GeV)

Spin-Independent DM-nucleon scattering cross section

****** Caveat: collider limits depends strongly on coupling assumptions

INFN

Future Analyses and DM Interpretations

- Wide resonances ($\Gamma >> \exp$. resolution)
 - bump search ($\Gamma/M \approx 30\%$)
 - dijet angular analysis ($\Gamma/M \preccurlyeq 100\%$) \longrightarrow
 - analyses sensitive to $0.5 \approx g_q \approx 1.5$
 - final results on DM interpretation to be released soon
- Final states with b-quarks
 - spin-0 mediators have larger coupling to b-quarks than light-quarks (as Higgs)
 - some results ready but DM interpretation in progress
- Low-mass region (new experimental methods)
 - jet substructure in scouting / trigger level analysis

$$\chi_{\rm dijet} = \exp(|\eta_{\rm jet1} - \eta_{\rm jet2}|)$$

Summary

- Collider searches are complementary to direct and indirect dark matter detection experiments
- Searches for dijet resonances in ATLAS and CMS cover a wide range of mass and coupling
 - $M_{med} > 50 \text{ GeV}$, $0.1 \leq g_q \leq 0.45$ (Z`model)
- Trigger strategy plays crucial role
 - different methods to probe low-mass region
 - trigger-level analysis and ISR tagging
- No discovery yet, but searches with more data and new experimental techniques can hold surprises
 - keep and eye on CMS excess at 115 GeV

Backup

SAPIENZA UNIVERSITÀ DI ROMA

N **F N**

N F N

Dijet signal shapes

- Resonances containing gluons, which emit QCD radiation more strongly than quarks, have a more pronounced tail
- For the high-mass resonances, there is also a significant contribution that depends both on the PDF and on the natural width of the Breit–Wigner resonance
 - For resonances produced through interactions of non-valence partons in the proton, the lowmass component of the Breit–Wigner resonance distribution is amplified by the rise of the parton probability distribution at low fractional momentum.
- Neglecting the tails, the approximate value of the dijet mass resolution varies with resonance mass from 7% at 1.5 TeV to 4% at 7 TeV.

CMS Search for Boosted H→bb

- Search for boosted H(bb) + ISR jet
 - leading wide-jet (AK8) with pT>450 GeV and $|\eta| < 2.5$, no MET, no leptons
 - H-jet candidate has requirement on two-prong substructure + btagging properties consistent with H(bb) signal
- QCD background estimated from data in signal-depleted control ٠ region, created by inverting the b-tag selection
 - $n_{\text{pass}}^{\text{QCD}}(m_{\text{SD}}, p_{\text{T}}) = R_{\text{p/f}}(\rho(m_{\text{SD}}, p_{\text{T}}), p_{\text{T}}) n_{\text{fail}}^{\text{QCD}}(m_{\text{SD}}, p_{\text{T}})$
 - b-tag variable almost uncorrelated from jet mass and p_T
- Signal extracted from simultaneous fit to signal and control regions in 6 different jet p_T bins (from 450 to 1000 GeV)
- H signal generated with POWHEG (gluon-gluon fusion) ٠
 - factorized pT dependent corrections to account for finite top mass effects and NNLO effects \rightarrow 30% uncertainties on cross section in pT range considered
- Start being sensitive to H(bb) signal, observed Z(bb): ٠

	H	H no $p_{\rm T}$ corr.	Z
Observed signal strength	$2.3^{+1.8}_{-1.6}$	$3.2^{+2.2}_{-2.0}$	$0.78^{+0.23}_{-0.19}$
Expected UL signal strength	< 3.3	< 4.1	_
Observed UL signal strength	< 5.8	< 7.2	
Expected significance	0.7σ	0.5σ	5.8σ
Observed significance	1.5σ	1.6σ	5.1σ

Boosted signal identification

INFN

Jet substructure

- Jet invariant mass
 - QCD-jet \rightarrow small mass
 - W-jet \rightarrow M_W ~ 80 GeV
- Jet pruning
 - Clean jet from extra hadronic activity in event
 - Also remove soft part from hadron shower

Re-cluster jet constituents (using C/A or kt algorithm) applying additional requirements at each [i,j] recombination

Jet pruning

 M_{JET}

 $p_{T,JET}$

$$z = \frac{\min(p_{T,i}, p_{T,j})}{p_{T,i+j}} > 0.1 \quad \text{OR} \quad \Delta R_{ij} < 0.5$$

- Filter out soft and large-angle QCD emissions (i.e. pile-up)
- Pruned jet mass

- Good separation between W-jet and QCD

veto soft and large

angle recombinations

Nsubjettiness

- Topologial compatibility with hyp. of N subjets
- Re-cluster jet, halting once reached N subjets
- τ_N : p_T -weighted sum over jet constituents of distances from closest subjet axis

$$\tau_{N} = \frac{1}{d_{0}} \sum_{k} p_{T,k} \min[\Delta R_{1,k}, \Delta R_{2,k}, \dots, \Delta R_{N,k}]$$

- Di-polar structure: τ_2/τ_1 ratio
 - Fairly good separation between W-jet and QCD <u>after pruned jet mass cut</u>

Calibration of Jet-substructure Observables

- Use known processes to calibrate and test jet substructure algorithms
 - W bosons from top pair production
- Measure data/MC scale factors
 - jet mass scale (few % uncert.)
 - jet mass resolution (~5% uncert.)
 - efficiency of two-prong substructure (~10% uncert.)
- Measurement extrapolated at higher pT (>500 GeV) than what measured in data (~200-300 GeV)
 - pT dependent corrections based on simulation studies (i.e. comparing different parton shower algorithms)

CMS Data Scouting (1)

POTO SOLUD **EXAMPLE: The HT events**

CMS Data Scouting (2)

Event Content

- Calo Scouting
 - Four-momenta of Calojets with pT>20 GeV
 - Vertices (when available), "opportunistically" from other paths in the trigger table
 - Event information
 - energy density ρ (for pile-up subtraction)
 - Missing transverse energy

PF Scouting

- · Four-momenta of relevant physics objects
 - e, μ, γ, PFJets, PF candidates, vertices
- Event information (as for Calo Scouting, but with tracking)

Typical size: 10 kb

- Compare HLT jets vs offline reconstructed jets
 - jet energy scale agree at % level after corrections
 - jet energy scale uncertainties about factor 2 larger (still < few% in whole pT range)

