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[RunII challenge

LHC energy: 7-8 TeV in Runl — 13 TeV in Runll
Peak luminosity: 0.7x103* cm2s! —1.4x103* cm™2s™!
Bunch spacing: 50 ns — 25 ns

Average PileUp (<PU>): 25 — 40
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[Runl legacy papers

= EGM-14-001 - “Performance of photon reconstruction and identification with the
CMS detector in proton-proton collisions at s = 8 TeV”, JINST 10 (2015) PO8010

= EGM-13-001 - “Performance of electron reconstruction and selection with the
CMS detector in proton-proton collisions at s = 8 TeV”, JINST 10 (2015) PO6005

= JME-13-003 - “Performance of the CMS missing transverse momentum
reconstruction in pp data at\s = 8 TeV”, JINST 10 (2015) P02006

= MUO-11-001 - “The performance of the CMS muon detector in proton-proton
collisions at \s = 7 TeV at the LHC”, JINST 8 (2013) P11002

= EGM-11-001 - “Energy calibration and resolution of the CMS electromagnetic
calorimeter in pp collisions at Vs = 7 TeV”, JINST 8 (2013) PO9009

= TRK-11-001 - “Description and performance of track and primary-vertex
reconstruction with the CMS tracker”, JINST 9 (2014) P10009

= MUO-10-004 - “Performance of CMS muon reconstruction in pp collision events
at s =7TeV, JINST 7 (2012) P10002

= JME-10-009 - “Missing transverse energy performance of the CMS detector”,
JINST 6 (2011) PO9001

= TRK-10-001 - “CMS Tracking Performance Results from Early LHC Operation”,
EPJC 70 (2010) 1165

http:/ /cms-results.web.cern.ch /cms-results /public-results /publications/DET
full list of CMS publications on detector and reconstruction performance
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Track tructi
Tracking is a challenge with high PU and 25 ns bunch spacing
due to the increase occupancy (affecting timing and fake rate)
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Tracking improvement in sy
RunlI

New algorithm for strip-seeded tracking steps
o  main feature is the X? cut from straight line fit of 3 points in the RZ plane

o rejects half of the seeds without introducing any inefficiency in track
reconstruction.

Strip cluster charge cut
o  cluster generated by OOT PU have low collected charge
o cutting on cluster charge largely improves timing and fake rate performance
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Tracking improvement in o
Runll: performance vs PU

Many other improvements in Runll tracking:

= two new muon iterations to recover efficiency loss observed in 2012 data at high PU
m  pixel dynamic inefficiency recently included in the simulation

m tracking at High Level Trigger: 4x time reduction at PU=40 with similar performance

Performance comparison with Runl vs Runll nominal PU conditions
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m  Very similar CMS physics performance for reconstruction objects based on
tracks in Runll w.r.t. Runl despite large PU increase and 25 ns BX. 7
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[Muon tracking improvement

= Loss in muon reconstruction efficiency in the tracker observed in
2012 with pile-up.
= Two muon-specific tracking iterations developed to recover it:
o  Outside-in — seeded by the muon system to recover the missing muon-track
in the tracker

o Inside-out — re-reconstruct muon-tagged tracks with looser requirements to

improve the hit collection efficiency
Z—upu tight ID efficiency

Full efficiency recovered for muon tracks in the tracker. improvements
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New displaced-muon

reconstruction in Runll

Two new muon reconstruction algorithms for displaced-muons in RunllI.
1) designed for muons produced in decays happening very far from the interaction point and

eventually with significant delay — use only muon chamber hits

) designed for muons displaced in time and produced within the inner-tracker volume — use
both the inner-tracker and muon chamber hits

Constraint on the interaction point removed in both algorithms.

Example of exotic signature:

long-lived massive (m=500 GeV) particle,

stopping within the detector at R>1 m
and decaying to 2 muons

CMS

Efficiency improvement of the two

algorithms with muon from stop decay
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The dimuon invariant mass |*™"

spectrum with 13 TeV data
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ECAL pulse shape &
reconstruction

= Electrical signal from the photodetectors amplified and shaped by a multi-
gain preamplifier.

m The output is digitized at 40 MHz and N=10 consecutive samples are
readout and used to reconstruct the signal amplitude.

» In Runl (LHC bunch spacing of 50 ns) a digital filtering algorithm was used
to filter the electronic noise:
o  both in online and offline reconstruction
o  noise estimated event-by-event by averaging the first 3 samples.
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ECAL pulse shape ey
reconstruction in Runll

Pile-up (mainly OOT) affects the performance of RunlI algo.

Several methods investigated during LS1 to mitigate the effect of
pile-up, maintaining optimal energy resolution and noise filtering.

New reconstruction method: MULTI-FIT

estimates the IT signal amplitude and up to 9 OOT amplitudes by
minimization of:

Pij : pulse templates for bunch crossing j
same shape but shifted in time of multiple 02
of 25 ns (taken from very low PU runs)
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ECAL pulse shape ey
reconstruction in Runll

Examples of fitted pulses for Timing distribution of the rechits
simulated event in the Endcap with reconstructed energy > 1 GeV
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Crucial for the search of narrow resonances from energy deposited in OOT BX

decaying in photons or electrons. thanks to the multifit method. 13
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[The dielectron invariant mass ]L/

spectrum with 13 TeV data
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[Missing Transverse Energy

= Missing Energy in the plane transverse to the beam direction is strategic to
any SUSY analysis and also a key element of several Exotica searches.

= Instrumental and non-physical MET to be reduced and kept under control.

Event by event MET comparison in Runl and Runll reconstruction:

o largely exploiting also the new HCAL reco method to mitigate OOT PU (similar to
ECAL, three amplitudes with floating timing).

o  Outliers reduced in 50 ns data and large tail in 25 ns data removed.
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[Conclusions

LHC Runll conditions (high PU, 25 ns BX, ...) poses severe
requirements to tracking and calorimeter reconstruction.

Huge effort during LS1 to improve the reconstruction
performance:

o tracking fake rate, and timing are under control without affecting tracking
efficiency and capability of tracking inside jets

o  new algorithms in muon tracking and reconstruction of displaced tracks to
enlarge the physics reach in many searches

o  new reco amplitude methods in calorimeters to mitigate the effect of OOT PU
mitigation on the energy measurements preserving excellent energy resolution
in ECAL and improving MET reconstruction

o  many other significant reconstruction improvements on Jets, b-tagging, and
tau-tagging side not covered in this talk.

In general, new reconstruction performance comparable or better
than Runl despite the higher PU and reduced BX separation of Runll







Magnet cryogenics issues

C
’. /)

* The restart of the CMS magnet after LS| was more

complicated than anticipated due to problems with the
cryogenic system in providing liquid Helium.

» Inefficiencies of the oil separation system of the
compressors for the warm Helium required several
interventions and delayed the start of routine operation of
the cryogenic system.

* The data delivered during the first two weeks of LHC re-
commissioning with beams at low luminosity have been
collected with B=0

Shield

X

i

[Magne]
* Currently the magnet can be operated, but the continuous up-time is still limited
by the performance of the cryogenic system requiring more frequent maintenance

than usual.

* A comprehensive program to re-establish its nominal performance is underway.
These recovery activities for the cryogenic system will be synchronized with the
accelerator schedule in order to run for adequately long periods.

* A consolidation and repair program is being organized for the next short technical

stops and the long TS at the end of the year.
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