

Search for high mass resonances in ATLAS and CMS

CLAUDIO QUARANTA

"SAPIENZA" UNIVERSITY OF ROME AND INFN SEZIONE DI ROMA

(ON BEHALF OF THE ATLAS AND CMS COLLABORATIONS)

LHCP 2021 - 09/06/2021

Search for new resonances

High mass resonances:

- Predicted by many Beyond Standard Model (BSM) theories:
 - GUT, compositeness, warped extra dimension
 - Mediators of interaction between
 SM and Dark Matter (DM) particles

Resonance search:

- Full reconstruction of resonance mass from decay products
- Clear experimental signature: peak over smooth background

Many efforts from ATLAS and CMS collaborations:

- cover wide range of final states and resonance masses
- No evidence for new physics BSM, even with full Run 2 dataset

In this phase of the LHC, ATLAS and CMS activity is focused on analysis upgrades

 Extend searches to low resonance mass: <u>Silvio</u> <u>Donato's talk</u> New theoretical interpretation of results 	Final state	Process	Links
	2 b-jets	$Z' \rightarrow bb$	(to be confirmed) CMS;
	➡ Dijet + <i>l</i>	$X \rightarrow jj + l$	<u>JHEP 06 (2020) 151</u> (ATLAS)
Explore new experimental signatures	Jets + E_T^{miss}	$X \to E_T^{\rm miss} + VV$	<u>PRL 126 1218 02</u> ATLAS
	→ Trijet	$X \to Y + j \to 3j$	(approved) CMS;

- Some new physics models foresee new resonances decaying mostly to b quarks
 - $\circ \ Z' \to b \overline{b}$
 - $o b^* \rightarrow bg$
- Suppression of QCD multijet background by requiring b-jet in the final state
 - Enhance sensitivity to new physics

New limits on excited quarks (b^*)

2 production processes

- $bg \rightarrow b^*$ (s-channel, pdf suppression due to initial state b quark)
- $q\bar{q} \rightarrow b^*\bar{b}$ (contact interaction, dominant) $\rightarrow \underline{NEW}$
- > Excluded $m_{b^*} < 4.0 \ TeV \rightarrow$ Large increase in mass limit thank to new interpretation

Dijet + lepton final state

 $W' \rightarrow Z' + W$ Dijet + ISR W/ZExtension of standard dijet bump search Require additional isolated high- p_T W/Z0 \sim lepton in the final state v_e/v_μ or e/μ Strong reduction of QCD multijet $\sim z'$ background v_e/v_μ q Enhance sensitivity to new physics 0 signals with additional lepton in Events the final state ATLAS 10⁷ Data Background fit 10⁶ $\chi^{2}/ndf = 0.92$ 10⁵ 10^{4} **Mass limit** Model 10^{3} √s=13 TeV, 139 fb⁻¹ $Z' + ISR W \rightarrow qqlv$ m_{7} , < 1.2 TeV Dijets + e/μ 5 Significance $W' \rightarrow Z' + W \rightarrow qqlv$ $m_{Z'} < 2 TeV$ -5 2×10⁻¹ 3×10⁻¹ 1 2 3 5 6 7 m_{ii} [TeV]

- Existing searches for Dark Matter (χ) consider many $E_T^{miss} + X$ final states (Varun Sharma's talk):
 - $E_T^{miss} + q$ (monojet, monotop)
 - $E_T^{miss} + \gamma$ (monophoton)
 - $E_T^{miss} + V$ (mono-Z, mono-W)
 - $E_T^{miss} + H$ (mono-Higgs)

$\succ E_T^{miss} + VV$: unexplored final state

- Z' = mediator of interaction between quark and Dark Matter
- s = Dark Higgs (couples to χ and Z')
- s decays to two vector bosons (focus on hadronic final states)

Results

Main SM background: V + jets

- Modeled using Control Regions (CR) in data requiring 1 or 2 additional leptons
- Main observable:
 - reconstructed mass of the VV system (m_{VV})
- Simultaneous fit to m_{VV} distributions in all categories and regions
 - No evidence for new resonances

- > Model with 3 particles of unknown mass: $m_{Z'}$, m_s , m_{χ}
- ► Limits in 2D: $m_{\chi} = 200 \text{ GeV}$; $m_{Z'} \in [0.5; 2.5] \text{ TeV}$; $m_s \in [160; 360] \text{ GeV}$

Trijet resonances

Cascade decay with 2 new resonances:

- P_1, P_2, P_3 are q/g producing jets
- Different hadronic final state topologies

▶ Boosted regime
$$\rho_m = \frac{M(R_1)}{M(R_2)} < \sim 0.2$$
:

- $\circ P_1, P_2$ jets merged
- Exploit jet substructure and cascade decay properties

Jet identification and observables

 m_{jj}

 m_{R_2jet}

 $m_{P_3 jet}$

> Signal events:

- Cross-shaped area in plane $(m_{R_2jet} vs m_{P_3jet})$
- Cross centered @ M_{Res2}
- Vertical band: wrong jet ID

Strategy:

- Divide cross in 2D categories
 - Recover events with misID jets
 - Categories change according to M_{Res2} (sliding window)
- \circ Simultaneous fit to m_{jj} distributions for each category

- Wide range of signal hypotheses tested:
 - $M(R_1) \in [2; 9] TeV$
 - $\rho_m \in [0.1; 0.2]$
- No evidence for new resonances found
- Largest excess:
 - o loc. significance 3.2 std. dev.
 - Glob. significance < ~1.8 std.dev
- > Combined m_{jj} plot (weighted):

$$w_i = \frac{S_i}{S_i + B_i}$$

 $S_i = \#$ signal events in cat. i

 $B_i = \#$ background events in cat. i

Results interpreted in Warped Extra Dimension model (Agashe et al. JHEP 05 (2017) 078)

 $q\bar{q} \rightarrow g_{KK} \rightarrow \phi g \rightarrow 3g \ (g_{KK} = Kaluza-Klein gluon; \ \phi = radion)$

- The LHC Run 3 will start in 2022:
 - Expect similar integrated luminosity as Run2
 - Center-of-mass energy $\sqrt{s} = 13-14 \ TeV$
- Mild improvement expected from the increment of data sample size
- Increase of energy will have considerable impact on sensitivity only for very high masses (> 6 - 7 TeV)
- The collection of new data must proceed in parallel with analysis improvements:
 - Exploration of new final states (including boosted objects)

