SEARCH FOR PHYSICS BEYOND STANDARD MODEL AT THE LHC

Daniele del Re

Sapienza Università & INFN Sezione Roma

WHY BSM

Several open issues implying Physics beyond Standard Model. Some examples:

- 1. Why only three families of leptons and quarks?
- **2.** Why four fundamental interactions and not one?
 - unification is impossible even at very large energies
- 3. Why only 5% of matter made of ordinary SM particles?
 - -what is dark matter?

4. Why most massive particle"only" 200 times heavier than p? – desert above 170 GeV

why searches at LHC?

- large energy, large luminosity
- creation of massive new particles
- pletora of different final states to be explored

BSM @ LHC

BSM @ LHC

my choice

LAST SUMMER CRUCIAL FOR LHC

Center of mass increase

-13 TeV (run2) vs 8 TeV (run1)

Luminosity increase

- improved LHC performance
- reached 10³⁴ cm⁻² s⁻¹
- ->2 fb⁻¹ per week
- -~15 fb⁻¹ @ 13 TeV collected for Summer conferences (July)
 - ▶ to be compared with 20 fb⁻¹ collected @ 8 TeV

Impressive number of new BSM results (non-SUSY) @ ICHEP

- CMS: 28(22+6) results
- ATLAS: <u>18</u> results

IMPORTANCE OF ENERGY INCREASE

- For high mass searches parton luminosity counts!
 Huge ratio in the interesting (not yet excluded) region
- End of 2016 (~40fb⁻¹) enough to supersede all 8 TeV results

INCREASE IN LUMINOSITY

DARK MATTER

Properties

- stable
- no electric or color charge
- very weak interaction with
 Standard Model particles
- subject to gravity interaction

 Several potential candidates fulfilling these requirements for dark matter

- Dark: weakly interacting with electromagnetic radiation
- Hot & dark: ultra-relativistic velocities
 - neutrinos
- Warm & dark: very high velocity
 - sterile neutrinos, gravitinos
- Cold & dark: moving slowly
 - Lightest SUSY particle (neutralino, gravitino as LSP)

DARK MATTER INTERACTION

Indirect Detection

Direct Detection

Production at Colliders

DARK MATTER INTERACTION

Indirect Detection

Direct Detection

Production at Colliders

• Pair production at LHC

- DM candidates escape the detector (weekly interacting
 - large missing energy
- need to identify ("tag") events of interest with some extra object
 - otherwise you see nothing in the detector

MODELING DM CANDIDATE INTERACTIONS

DARK MATTER SEARCH AT LHC

- EW bosons and gluons can be radiated by initial partons
- Presence of high energy photon/W/Z/Higgs or jet(s) in addition to large missing transverse energy
- Gluon radiation at higher rate than EW bosons
 - strong interaction vs. electromagnetic

- mono-jet

 strongest constraints
- mono-photon
 - more challenging for background estimation
 less powerful: EW vs. strong interaction
- mono-W/Z leptonic
 - clean signature and simple trigger
 - penalized by W/Z branching fraction
- mono-W/Z hadronic
 - larger statistics with larger background
- tt+MET/bb+MET and mono-top
 - more complicated experimentally
 - powerful in some scenarios
- mono-Higgs

DM CANDIDATE

DM @ LHC: ANALYSIS STRATEGY

- Restrict to high MET region to reduce impact of background
- Count events after bkg
 subtraction

- Background modeling very important
- Main contributions (monojet example)
 - -Z(vv)+jet

-W(lv)+jet, where charged lepton is not reconstructed

HOW TO DERIVE BACKGROUNDS

 Main backgrounds (Z(vv)+jet and W(lv)+jet) modeled using control samples (after removing reconstructed leptons or gamma)

DM RESULTS

- no evident excess (similar for the other final states)
 - put constraints on the mass of DM and mediator

INTERPRETATION

- Report exclusion limits in mDM vs Mmed plane or vs Mmed
 - Constraints depend on the mediator type and on couplings
- Can be compared with direct searches

LONG LIVED AND UNCONVENTIONAL SEARCHES

Long-lived (LL) and unconventional exotic particles with striking signatures predicted by many extensions of the Standard Model. Examples:

- Heavy, long-lived, charged particles (R-hadrons, Sleptons)
 - speed < c</p>
 - charge not equal to ±1e
 - lifetimes > few ns. Travel distances larger than the typical detector and appear stable
- Particles can decay in the detector after few cm (neutralinos in GMSB, mass-degenerate gauginos, particles of an Hidden Sector)
 - decay in displaced vertexes (jets, leptons, γ)
 - delayed interaction with calorimeters due to extra flight-length

TYPICAL LONG-LIVED ANALYSIS

• Detector-based exotic signatures require:

- -dE/dx
- -time of flight
- displaced vertex
- disappearing tracks
- -stopped particles

Possible additional requirements to identify SUSY-like topology:

- -MET
- large jet activity (HT, pT(leading jet)>threshold
- the less the extra requirements, the smaller the model dependence
- Specific control samples to model exotic signature in detector:
 - LL signatures like detector noise. Deep knowledge of detector.
- Very generic searches, driven by signatures
 - -open-minded searches. Models as benchmark to report results

Many results at LHC. Reporting only the 13 TeV ones.

HEAVY STABLE CHARGED PARTICLES

Combination of several detector inputs to be sensitive to slepton (slow muon-like) and R-hadrons (maybe with short lifetime)

BSM at LHC

HSCP: RESULTS

No excess seen

Limits presented for different scenarios

gluinos (also metastable), stop, stau (GMSB), lepton-like long-lived fermions

DISPLACED VERTEXES: LEPTON JETS

- Long-lived particles decaying in charged particles (hadrons, leptons) identified via vertexing, displaced tracks (large impact parameter) or clustering of displaced tracks
- No excess. Limits in 2D (σ vs lifetime)

DISPLACED VERTEXES

- No Excess
- Limits in 2D (mass vs lifetime)

SUMMARY OF LONG LIVED

Summary plot for some LL analyses (ATLAS)

7-8 TeV LL analyses for CMS

Final state targeted	7 TeV	8 TeV
displaced e-e/µ-µ pairs	1211.2472	1411.6977
displaced µ-µ pairs in muon system		2005761
displaced e-µ events		1409.4789
displaced µ-µ pairs (dark photons)		1506.00424
displaced photons using ECAL timing	1212.1838	2063495
displaced photons using conversions	1207.0627	2019862
displaced vertices		2160356
displaced dijets		1411.6530
short, highly ionizing disappearing tracks		thesis
disappearing tracks		1411.6006
kinked tracks		thesis
fractionally charged particles	1210.2311	1305.0491
heavy stable charged particles (HSCP)	1205.0272	1305.0491
stopped particles	1207.0106	1501.05603
out of time muons		thesis

Courtesy J. Antonelli

Resonances

Fully reconstructed resonances represent the simplest way to discover new particles

- striking and incontrovertible signature
- -small systematics, robust

J/psi

m_a [GeV]

710. 2. Mass spectrum showing the existence of J. suits from two spectrometer settings are plotted wing that the peak is independent of spectrometer rents. The run at reduced current was taken two oths later than the normal run.

HINTS BEFORE ICHEP

Dibosons

excesses at 1.9-2.0 TeV (up to 3 sigmas local) in different channels for both ATLAS and CMS

Diphotons

>3 sigmas (local) at 750 GeV for both ATLAS and CMS

MANY COMBINATIONS

- Most of resonance searches are two-body
- Many possible combinations and channels explored
 - -just focusing on the 3 channels
 - much more in next talk by Marcello!

DIJET: HIGH AND LOW MASS

- High mass (>~1.5 TeV): selected with tight high p_T triggers
- Intermediate mass (~0.5-1.5 TeV): storing reduced event content on disk (scouting, TLA)
- Low mass (~100-300 GeV): using events with initial state jet radiation and boosted dijet

DIJET AND DM

- In simplified models, limits on mass of mediator decaying into dijet converted into constraints on DM mass
 - with specific couplings to quarks (g_q) and DM (g_{DM})
- Complementary to mono-X searches

BSM at LHC

DIBOSON

BSIM at LHC

DIPHOTON

- Assuming the cross section seen in 2015 data, large excess to be observed in 2016
- Unfortunately no peak showed up

DIPHOTON: LESSONS LEARNT

Statistical fluke

- no mistake, fluctuations
 happen
- Look-elsewhere effect is important
 - @ LHC, results always presented with LEE included

- "5 sigma local p-value per experiment for discovery" rule is a good one
 - takes somehow into account the many searches we perform
- 750 GeV appeared in a mass region already excluded in some models (RS graviton) and taken very seriously by theorists

 important to keep searching in intermediate mass range (200 GeV 1 TeV)

CONCLUSIONS AND FUTURE

Impressive number of results on BSM searches at LHC

- thanks to increase in energy and luminosity

No new Physics seen yet

-large excesses on diphoton and diboson not confirmed

Null results put strong constraints on BSM

- for same states more than double/triple statistics to see >5 sigma excess
- expect no huge surprises in the next year or so

BUT

- More than 100 fb⁻¹ by end of 2018
- Run1 program not yet fully repeated!
 - -many searches still to be finalized and presented
- Surprises may come from mass regions already excluded in specific models and benchmarks
 - keep searching in the low/intermediate mass region

Next year still crucial for LHC BSM searches

SUMMARY OF BSM

13 TeV results dramatically extend exclusion limits

Still many 8 TeV channels to be updated

-Lots of new results yet to come

BSM at LHC

SUPERSYMMETRY

- Strong-production searches already exceeding exclusion limits at 8 TeV
- Extending EWK-ino searches
 - ICHEP results already competitive with Run 1
 - Not just top-up but new probes: Higgs-tagging

(IN)DIRECT DETECTION VS LHC

BSM at LHC

EXPERIMENTAL ISSUES: RESOLUTION

- Mass resolution crucial in resonance searches
 - 1. statistical power inversely proportional to the mass resolution
 - 2. resonance hidden by bad understanding of resolution
- Need ad-hoc studies and calibration strategies at such large momenta

EXPERIMENTAL ISSUES: BACKGROUND

Accurate background estimate to not bias signal extraction

- signal can be overestimate (or even fake excess)
- signal can be missed

Two techniques

- background shape from MC and normalize in control region (usually low mass) + theory/experimental systematics
- parameterize background shape and fit parameters directly on data

Search for New Physics at the LHC

DIJET: RESULTS

- Several interpretations:
 - maximum mass of the excluded region varying between 1 and 7 TeV
 - -very similar performance between the two experiments

HOW DOES IT LOOK?

SM event

DM event

HOW DOES IT LOOK?

SM event

DM event

 $MET = |\vec{p_t}(missing)| = |-\Sigma_i \vec{p_T}_i(visible)|$

CMS Detector

SILICON TRACKER Pixels (100 x 150 μm²) ~1m² ~66M channels Microstrips (80-180μm) ~200m² ~9.6M channels

> CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76k scintillating PbWO₄ crystals

PRESHOWER Silicon strips ~16m² ~137k channels

STEEL RETURN YOKE ~13000 tonnes

> SUPERCONDUCTING SOLENOID Niobium-titanium coil carrying ~18000 A

Total weight Overall diameter Overall length Magnetic field

: 14000 tonnes : 15.0 m : 28.7 m : 3.8 T HADRON CALORIMETER (HCAL)

Brass + plastic scintillator ~7k channels

MUON CHAMBERS

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

FORWARD

~2k channels

CALORIMETER Steel + quartz fibres

Daniele del Re

LHC

FROM THEORY TO SIGNATURES

FROM SIGNATURES TO THEORY

