

Search for new physics in dijet resonant signatures and recent results from Run2 with the CMS experiment

Giulia D'Imperio Università di Roma La Sapienza – INFN Roma – CERN

On behalf of the CMS collaboration

LHCP2015 St. Petersburg - 01/09/2015

Outline

NEW!

- Focused on Run 2 analysis and results \rightarrow just released a public result <u>CMS-PAS-EXO-15-001</u>
- Introduction and motivation
- Jet reconstruction
- Trigger and selection
- Signal shapes
- Background fit and comparison with Run 1
- Upper limits and comparison with Run1
- Conclusions

Dijet resonance search

• Narrow resonances X decaying in 2 jets \rightarrow bump in the dijet mass spectrum

- Simple and striking signature \rightarrow sensitive to any resonance coupling to quarks/gluons
- LHC collides pp @13 TeV \rightarrow dijet resonance factory at new energy scale!
- 20 fb⁻¹ of luminosity collected in Run 1 at $\sqrt{s} = 8$ TeV
- 42 pb⁻¹ of luminosity in Run 2 at $\sqrt{s} = 13$ TeV for the results presented in this talk.

Ryn 2 vs Ryn 1 sensitivity

- Parton luminosity ratio increase rapidly at high masses
- With much smaller integrated luminosity than Run1 \rightarrow 13 TeV data same sensitivity as 8 TeV

 From parton luminosity ratio → present dataset @13 TeV more sensitive than Run 1 for masses > 5 TeV

Highest* dijet mass event in Run 1

Dijet mass = 5.2 TeV

CMS Experiment at LHC, CERN Data recorded: Fri Oct 5 12:29:33 2012 CEST Run/Event: 204541 / 52508234 Lumi section: 32

CMS Experiment at LHC, CERN Data recorded: Fri Oct 5 12:29:33 2012 CEST Run/Event: 204541 / 52508234 Lumi section: 32

Highest* dijet mass event in Run 2

Dijet mass = 5.4 TeV Run 2 highest mass event already greater than Run 1

CMS. Jet 0. pt = 2.62 TeV eta = 0.357 phi = 0.346Jet 1. pt = 2.55 TeV $e_{ta} = -0.160$ phi = -2.885 CMS Experiment at LHC, CERN Data recorded: Sun Jul 12 01:52:51 2015 CDT Run/Event: 251562 / 310157776 Lumi section: 347 Dijet Mass 5.4 TeV

* for $|\Delta \eta| < 1.3$

NEW!

CMS-PAS-EXO-15-001

Wide jet reconstruction

- Wide jets improve dijet mass resolution \rightarrow include FSR
 - clusters of PF anti-KT jets with cone R=0.5 (Run 1) or R=0.4 (Run2)
 - Wide jet cone R=1.1
- Jet identification criteria based on jet energy fractions
- Fiducial region $\rightarrow 1\eta l < 2.5$
- Do not use very soft jets $\rightarrow p_{r}>30 \text{ GeV}$

Jet energy corrections from MC + data driven residual correction provided centrally from CMS JetMET group

(wide jet cone R=1.1 is optimal for both 8 and 13 TeV)

- Trigger based on the scalar sum of transverse momentum of all jets in the event
 - HT > 650 GeV (Run1)
 - HT > 800 GeV (Run2)

Run 2

Relative efficiency vs. dijet mass

- Reference trigger HT > 475 GeV
- Reference trigger prescaled by a factor of 100

Trigger is turned-on completely for dijet masses >1.1 TeV

Selection

Signal

• Dijet resonance produced in S-channel

Background

• QCD produced in T-channel

- **QCD** $\cos \theta^*$ peaks at 1, forward jets
- **Dijet resonance** $\cos \theta^*$ depends on the spin, but more flat

Selection

- Suppress QCD (t-channel) and enhance signal (s-channel)
 - $|\Delta \eta| < 1.3$ (corresponds to $\cos \theta^* < 0.57$)
- Avoid bias from trigger inefficiency
 - M_{ii} > 890 GeV (Run1)
 - M_{ii} > 1.1 TeV (Run2)

Data-MC comparisons and stability

- Agreement in shape between data and simulation
- MC normalized to data

EXO-15-001_TwikiPlots 11

INFŃ

Dijet event topology

• Angular distribution typical of clean dijet events

Signal modeling

- Narrow resonance shapes from simulations of RSGravitons and excited quarks, as in Run 1
 - quark-quark (qq \rightarrow G \rightarrow qq)
 - quark-gluon (qg \rightarrow q* \rightarrow qg)
 - gluon-gluon (gg \rightarrow G \rightarrow gg)
- Resonance masses up to 7 TeV
- Left tail mostly from FSR for low masses
- Some tail from PDFs at high masses, especially when gluons in final state

Background fit in Run 1

 No evidence of dijet resonances: data agree with background fit function

INFN

- "excesses" @1.8TeV and @3.6 TeV (<~ 2σ)
- Run 2 analysis still not as sensitive as Run 1
 - Need ~400 pb⁻¹ for 3.6 TeV
 - Need ~3 fb⁻¹ for 1.8 TeV

Background fil in Run 2

Systematic uncertainties

Sources of uncertainty are the same as in Run 1, more conservative values used for Run 2

• Jet energy scale (JES)

conservative value 5%

 $\rightarrow\,$ propagated to the search by shifting the dijet resonance shapes by ±5%

• Jet energy resolution (JER)

same value as in Run 1 of 10%. \rightarrow propagated to the search by changing the width of the dijet resonance shapes by ±10%

Integrated luminosity

estimated at 12%

Choice of background parameterization

All 3 background parameters are varied in a correlated fashion along the 3 eigenvectors of the covariance matrix.

Ryn 2 exclusion

- Upper limits @95% CL on the cross section of qq, qg, and gg resonances
- Comparison to calculations of model cross sections

• Gives the following mass limits on models of dijet resonances

Model	Final State	Obs. Mass Limit	Exp. Mass Limit	
		[TeV]	[TeV]	
String Resonance (S)	qg	5.1	5.2	
Excited Quark (q*)	qg	2.7	2.9	
Scalar Diquark (D)	qq	2.7	3.3	
Axigluon (A)/Coloron (C)	qq	2.7	2.9	
Color Octet Scalar (s8)	gg	2.3	2.0	

Limits symmetry

Summary of observed limits, model cross sections, and mass limits

Inclusive search						
Model	Final state	Observed mass	Expected mass			
		exclusion (TeV)	exclusion (TeV)			
String resonance (S)	qg	[1.2,5.0]	[1.2,4.9]			
Excited quark (q*)	qg	[1.2,3.5]	[1.2,3.7]			
E_6 diquark (D)	qq	[1.2,4.7]	[1.2, 4.4]			
W' boson (W')	$q\overline{q}$	[1.2,1.9] + [2.0,2.2]	[1.2,2.2]			
Z' boson (Z')	$q\overline{q}$	[1.2,1.7]	[1.2,1.8]			
RS graviton (G), $k/\overline{M}_{\rm Pl} = 0.1$	$q\overline{q} + gg$	[1.2,1.6]	[1.2,1.3]			
b-enriched search						
Excited b quark (b*)	bg	[1.2,1.6]				
Wide resonance search						
Axigluon (A)/coloron (C)	$q\overline{q}$	[1.3,3.6]				
Color-octet scalar (S8)	gg	[1.3,2.5]				

Model	Final State	Obs. Mass Limit	Exp. Mass Limit	
		[TeV]	[TeV]	
String Resonance (S)	qg	5.1	5.2	
Excited Quark (q*)	qg	2.7	2.9	
Scalar Diquark (D)	qq	2.7	3.3	
Axigluon (A)/Coloron (C)	qq	2.7	2.9	
Color Octet Scalar (s8)	gg	2.3	2.0	

) CMS-PAS-EXO-15-001

conclusions

- Presented first results at $\sqrt{s} = 13$ TeV and comparison with Run 1
- Dijet mass distribution well modeled by the background parameterization
 - No evidence of dijet resonances... yet
- New mass limit on string resonances at 5.1 TeV exceeds previous limit of 5.0 TeV
- CMS now more sensitive to new physics than Run 1 for M > 5 TeV
- Still not as sensitive as Run 1 to lower masses
 - Need ~400 pb⁻¹ for 3.6 TeV
 - Need ~3 fb⁻¹ for 1.8 TeV
- Great potential on discovering new physics with the first few fb⁻¹ of data @13 TeV !

Limits summary

Summary of observed limits, model cross sections, and mass limits

Comparison of exclusion limits for a narrow resonance search

	Mass Limits (TeV)			
Model	Run 1 (20 fb ⁻¹)		Run 2 (42 pb ⁻¹)	
	Observed	Expected	Observed	Expected
String Resonance (S)	5.0	4.9	5.1	5.2
Excited Quark (q*)	3.5	3.7	2.7	2.9
Axigluon (A) / Coloron (C)	3.7	3.9	2.7	2.9
Scalar Diquark (D)	4.7	4.7	2.7	3.3
Color Octet Scalar (S8)	2.7	2.6	2.3	2.0

Signal modeling

- Narrow resonance shapes from simulations of RSG gravitons and excited quarks, as in Run 1
 - quark-quark (qq \rightarrow G \rightarrow qq)
 - quark-gluon (qg \rightarrow q* \rightarrow qg)
 - gluon-gluon (gg→G→gg)
- Resonance masses up to 7 TeV
- Left tail mostly from FSR for low masses
- Significant tail from PDFs at high masses, especially when gluons in final state

CMS-PAS-EXO-15-001

Giulia D'Imperio – Università La Sapienza – INFN Roma

INFN

<u>Giulia D'Imperio – Università La Sapienza – INFN Roma</u>

(Run 1)

Extensions of the inclusive analysis

Wide resonances:

 analysis sensitive to resonances with width/mass ratio up to ~30%

Phys. Rev. D 91, 052009

Magnet cryogenics issues

- The restart of the CMS magnet after LSI was more complicated than anticipated due to problems with the cryogenic system in providing liquid Helium.
- Inefficiencies of the oil separation system of the compressors for the warm Helium required several interventions and delayed the start of routine operation of the cryogenic system.
- The data delivered during the first two weeks of LHC recommissioning with beams at low luminosity have been collected with B=0

- Currently the magnet can be operated, but the continuous up-time is still limited by the performance of the cryogenic system requiring more frequent maintenance than usual.
- A comprehensive program to re-establish its nominal performance is underway. These recovery activities for the cryogenic system will be synchronized with the accelerator schedule in order to run for adequately long periods.
- A consolidation and repair program is being organized for the next short technical stops and the long TS at the end of the year.