Search for new physics in dijet resonant signatures and recent results from Run2 with the CMS experiment

Giulia D’Imperio
Università di Roma La Sapienza – INFN Roma – CERN

On behalf of the CMS collaboration

LHCP2015
St. Petersburg - 01/09/2015
• **Focused on Run 2 analysis and results**
 → just released a public result CMS-PAS-EXO-15-001
• Introduction and motivation
• Jet reconstruction
• Trigger and selection
• Signal shapes
• Background fit and comparison with Run 1
• Upper limits and comparison with Run 1
• Conclusions
Dijet resonance search

- Narrow resonances X decaying in 2 jets \rightarrow bump in the dijet mass spectrum

- Simple and striking signature \rightarrow sensitive to any resonance coupling to quarks/gluons
- LHC collides $pp \ @13$ TeV \rightarrow dijet resonance factory at new energy scale!
- 20 fb$^{-1}$ of luminosity collected in Run 1 at $\sqrt{s} = 8$ TeV
- 42 pb$^{-1}$ of luminosity in Run 2 at $\sqrt{s} = 13$ TeV for the results presented in this talk.
Run 2 vs Run 1 sensitivity

- Parton luminosity ratio increase rapidly at high masses
- With much smaller integrated luminosity than Run1 \rightarrow 13 TeV data same sensitivity as 8 TeV

From parton luminosity ratio \rightarrow present dataset @13 TeV more sensitive than Run 1 for masses > 5 TeV

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html
http://collider-reach.web.cern.ch/collider-reach/
Highest* dijet mass event in Run 1

Dijet mass = 5.2 TeV

* for $|\Delta \eta| < 1.3$

Phys. Rev. D 91, 052009
Highest* dijet mass event in Run 2

Dijet mass = 5.4 TeV
Run 2 highest mass event already greater than Run 1

* for $|\Delta \eta| < 1.3$
Wide jet reconstruction

- Wide jets improve dijet mass resolution → include FSR
 - clusters of **PF anti-KT jets** with cone **R=0.5 (Run 1)** or **R=0.4 (Run2)**
 - **Wide jet cone R=1.1**
- Jet identification criteria based on jet energy fractions
- Fiducial region → $|\eta|<2.5$
- Do not use very soft jets → $p_T>30$ GeV

Jet energy corrections from MC + data driven residual correction provided centrally from CMS JetMET group

(wide jet cone R=1.1 is optimal for both 8 and 13 TeV)
Trigger

- Trigger based on the scalar sum of transverse momentum of all jets in the event
 - $HT > 650 \text{ GeV} \ (\text{Run1})$
 - $HT > 800 \text{ GeV} \ (\text{Run2})$

Run 2

Relative efficiency vs. dijet mass
- Reference trigger $HT > 475 \text{ GeV}$
- Reference trigger prescaled by a factor of 100

Trigger is turned-on completely for dijet masses > 1.1 \text{ TeV}
Selection

Signal
- Dijet resonance produced in S-channel

\[\cos \theta^* = \tanh(\Delta \eta/2) \]

\[\Delta \eta \]

\[\theta^* \]

Background
- QCD produced in T-channel

\[\Delta \eta \]

\[\cos \theta^* \]

- QCD \(\cos \theta^* \) peaks at 1, forward jets
- Dijet resonance \(\cos \theta^* \) depends on the spin, but more flat

Selection
- Suppress QCD (t-channel) and enhance signal (s-channel)
 - \(|\Delta \eta| < 1.3\) (corresponds to \(\cos \theta^* < 0.57 \))
- Avoid bias from trigger inefficiency
 - \(M_{jj} > 890 \text{ GeV} \) (Run1)
 - \(M_{jj} > 1.1 \text{ TeV} \) (Run2)
NEW!
Data-MC comparisons and stability

The measured cross section is stable vs time → good data quality

- Agreement in shape between data and simulation
- MC normalized to data
Angular distribution typical of clean dijet events
- Narrow resonance shapes from simulations of RSGravitons and excited quarks, as in Run 1
 - quark-quark \((qq\rightarrow G\rightarrow qq)\)
 - quark-gluon \((qg\rightarrow q^*\rightarrow qg)\)
 - gluon-gluon \((gg\rightarrow G\rightarrow gg)\)

- Resonance masses up to 7 TeV

- Left tail mostly from FSR for low masses
- Some tail from PDFs at high masses, especially when gluons in final state
Background fit in Run 1

Data are fit with the parametrization

$$\frac{d\sigma}{dm_{jj}} = \frac{p_0 (1-x)^{p_1}}{x^{p_2 + p_5 \ln(x)}} \quad x = \frac{m_j}{8000} \text{GeV}$$

Run 1

- No evidence of dijet resonances: data agree with background fit function
- “excesses” @1.8 TeV and @3.6 TeV ($< \sim 2 \sigma$)
- Run 2 analysis still not as sensitive as Run 1
 - Need $\sim 400 \text{ pb}^{-1}$ for 3.6 TeV
 - Need $\sim 3 \text{ fb}^{-1}$ for 1.8 TeV
Data are fitted with the parametrization:

\[\frac{d\sigma}{dm_{jj}} = \frac{\rho_0 (1 - x)^p_1}{x^{p_2} + p_3 \ln(x)} \]

\[x = \frac{M_{jj}}{13000} \text{ GeV} \]

→ proved with Fisher test that p3 not needed to fit Run 2 dataset

Run 2

- Data well described by the background parametrization
 - $\chi^2/\text{ndf}=25/34$ (with empty bins)
 - $\chi^2/\text{ndf}=24/27$ (excluding empty bins)

- q^* resonance signal with mass=4.5 TeV superimposed for illustration
Systematic uncertainties

Sources of uncertainty are the same as in Run 1, more conservative values used for Run 2

- **Jet energy scale (JES)**
 - conservative value 5%
 - → propagated to the search by shifting the dijet resonance shapes by ±5%

- **Jet energy resolution (JER)**
 - same value as in Run 1 of 10%.
 - → propagated to the search by changing the width of the dijet resonance shapes by ±10%

- **Integrated luminosity**
 - estimated at 12%

- **Choice of background parameterization**
 - All 3 background parameters are varied in a correlated fashion along the 3 eigenvectors of the covariance matrix.
Run 2 exclusion

- Upper limits @95% CL on the cross section of qq, qg, and gg resonances
- Comparison to calculations of model cross sections

Graphs and Tables

- Gives the following mass limits on models of dijet resonances

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>String Resonance (S)</td>
<td>qq</td>
<td>5.1</td>
<td>5.2</td>
</tr>
<tr>
<td>Excited Quark (q^*)</td>
<td>qq</td>
<td>2.7</td>
<td>2.9</td>
</tr>
<tr>
<td>Scalar Diquark (D)</td>
<td>qq</td>
<td>2.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Axigluon (A)/Coloron (C)</td>
<td>$q\bar{q}$</td>
<td>2.7</td>
<td>2.9</td>
</tr>
<tr>
<td>Color Octet Scalar (s8)</td>
<td>gg</td>
<td>2.3</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Summary of observed limits, model cross sections, and mass limits

Run 1

![Graph showing observed limits and model cross sections for Run 1.](image1)

Run 2

![Graph showing observed limits and model cross sections for Run 2.](image2)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>String Resonance (S)</td>
<td>qq</td>
<td>5.1</td>
<td>5.2</td>
</tr>
<tr>
<td>Excited Quark (q*)</td>
<td>qq</td>
<td>2.7</td>
<td>2.9</td>
</tr>
<tr>
<td>Scalar Diquark (D)</td>
<td>qq</td>
<td>2.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Excited b quark (b*)</td>
<td>b enriched</td>
<td>2.7</td>
<td>2.9</td>
</tr>
<tr>
<td>Axigluon (A)/Coloron (C)</td>
<td>qq</td>
<td>2.3</td>
<td>2.0</td>
</tr>
<tr>
<td>Color-Octet Scalar (s8)</td>
<td>gg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phys. Rev. D 91, 052009

CMS-PAS-EXO-15-001
• Presented **first results at $\sqrt{s} = 13$ TeV** and comparison with Run 1

• Dijet mass distribution well modeled by the background parameterization

 • **No evidence of dijet resonances... yet**

• New mass limit on string resonances at 5.1 TeV exceeds previous limit of 5.0 TeV

• **CMS now more sensitive to new physics than Run 1 for $M > 5$ TeV**

• Still not as sensitive as Run 1 to lower masses

 • Need \sim400 pb$^{-1}$ for 3.6 TeV

 • Need \sim3 fb$^{-1}$ for 1.8 TeV

• **Great potential on discovering new physics with the first few fb$^{-1}$ of data @13 TeV !**
BACKUP
Summary of observed limits, model cross sections, and mass limits

Run 2

42 pb⁻¹ (13 TeV)

[Graph showing cross sections and mass limits for various models]

Comparison of exclusion limits for a narrow resonance search

<table>
<thead>
<tr>
<th>Model</th>
<th>Mass Limits (TeV)</th>
<th>Run 1 (20 fb⁻¹)</th>
<th>Run 2 (42 pb⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>String Resonance (S)</td>
<td></td>
<td>Observed</td>
<td>Expected</td>
</tr>
<tr>
<td>Excited Quark (q⁺)</td>
<td></td>
<td>5.0</td>
<td>4.9</td>
</tr>
<tr>
<td>Axigluon (A) / Coloron (C)</td>
<td></td>
<td>3.5</td>
<td>3.7</td>
</tr>
<tr>
<td>Scalar Diquark (D)</td>
<td></td>
<td>3.7</td>
<td>3.9</td>
</tr>
<tr>
<td>Color Octet Scalar (S8)</td>
<td></td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.7</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Signal modeling

- Narrow resonance shapes from simulations of RSG gravitons and excited quarks, as in Run 1
 - quark-quark ($qq \rightarrow G \rightarrow qq$)
 - quark-gluon ($qg \rightarrow q^* \rightarrow qg$)
 - gluon-gluon ($gg \rightarrow G \rightarrow gg$)

- Resonance masses up to 7 TeV

- Left tail mostly from FSR for low masses
- Significant tail from PDFs at high masses, especially when gluons in final state
Extensions of the inclusive analysis

(Run 1)

Search in 0,1,2 b-tag categories

Wide resonances:
- analysis sensitive to resonances with width/mass ratio up to \sim 30%
Magnet cryogenics issues

- The restart of the CMS magnet after LS1 was more complicated than anticipated due to problems with the cryogenic system in providing liquid Helium.

- Inefficiencies of the oil separation system of the compressors for the warm Helium required several interventions and delayed the start of routine operation of the cryogenic system.

- The data delivered during the first two weeks of LHC re-commissioning with beams at low luminosity have been collected with B=0

- Currently the magnet can be operated, but the continuous up-time is still limited by the performance of the cryogenic system requiring more frequent maintenance than usual.

- A comprehensive program to re-establish its nominal performance is underway. These recovery activities for the cryogenic system will be synchronized with the accelerator schedule in order to run for adequately long periods.

- A consolidation and repair program is being organized for the next short technical stops and the long TS at the end of the year.