Note to Reviewers

- Here is a first draft of the talk on "Collider constraints on dark matter, dark energy and cosmology" that I will be giving at Kruger2018 next thursday, December 6th. The talk is 40 minutes long, plus 5 minutes questions.
- * As you can see the slides are still not entirely complete, in particular:
 - I'm still working on the wording of the bullets of some slides;
 - I still have to rehearse it, and if I see that I have some extra time, I'll probably add the search for emerging jets (<u>https://arxiv.org/pdf/1810.10069.pdf</u>);
 - I'm not sure what the title meant by "cosmology" but I can't think of anything **specifically** cosmological we are doing at colliders, except for what I put.

Collider constraints on Dark Matter, Dark Energy and Cosmology

Francesco Pandolfi

INFN Rome

On behalf of the CMS and ATLAS Collaborations

Kruger2018: Discovery Physics at the LHC Kruger National Park, 06.12.18

Most Cosmological Matter Unaccounted For

Anomalies in observed universe: galaxy rotation, galaxy clusters, supernovae

• Simplest explanation: existence of an unknown, dark state of matter

Most of the Universe is Not Even Matter

- CMB tells us universe is flat: Ω_{tot} ~ 1
- Supernovae la: universe is accelerating
 - Incompatible with matter-only universe

	Ω	Ω·h²
Atoms	0.048	0.022
Dark Matter	0.26	0.12
Dark Energy	0.69	—

Three Types of Searches for Dark Matter

Latest Results from Direct Searches

Searches at Colliders: Need DM to Recoil vs ISR

Francesco Pandolfi

Beyond EFT: Simplified Models

- Since LHC Run-2: dropped EFT framework, moved to simplified models
 - Not yet full-blown theory, but more structure (eg. gauge invariance)

	Model	gdм	g q	gı	
Also more parameters :	vector	1	0.25	0	
А. Мом ♀	vector	1	0.1	0.01	
	axial-vector	1	0.25	0	
WE V	axial-vector	1	0.1	0.01	
	scalar	1	1	0	🍃 'simple' spin-0 models
	pseudoscalar	1	1	0	not gauge-invariant being dropped

Francesco Pandolfi

More Structure to Spin-0 Models: 2HDM

• Simple extension of SM: two Higgs doublets Φ_1 and Φ_2 tan $\beta = v_1 / v_2$

- Renormalizable and UV-complete
- **Five** Higgs particles:
- H≠ charged scalars
 h 'SM Higgs'
 H⁰ other neutral scalar
 A pseudoscalar

eg SUSY

- Will focus on 'type-II' models: $\Phi_1(\Phi_2)$ couples to up-(down-) quarks
- Recently popular: 2HDM+Z' and 2HDM+a
 - Additional vector (Z') or axial-vector (a) mediator to dark sector
 - Couples only to Higgs and dark matter: eludes experimental constraints

This is By No Means a Comprehensive Review

- Performance of dark matter searches often very similar in ATLAS and CMS
 - Won't show both ATLAS and CMS results for each channel
 - Will make a **personal** selection (to avoid repetition)

Channel	In this talk	Not in this talk
MonoJet	CMS 36 fb ⁻¹	ATLAS 36 fb ⁻¹
H(bb)+ME⊤	ATLAS 80 fb ⁻¹	CMS 36 fb ⁻¹
tt+ME⊤	CMS 36 fb ⁻¹	ATLAS 36 fb-1
DiJet	CMS 78 + 36 fb ⁻¹	ATLAS 36 fb ⁻¹
DiJet+ISR	ATLAS 15 + 36 fb ⁻¹	CMS 36 fb ⁻¹
DiLepton	ATLAS 36 fb-1	CMS 36 fb ⁻¹
Dark Energy	ATLAS 36 fb ⁻¹	_

MonoJet: A Classical Collider DM Search

Phys. Rev. D 97 (2018) 092005

MonoJet Results Complement Direct Searches

Phys. Rev. D 97 (2018) 092005 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) [] 1200 [] 90] 1000 [] 1000 [] 1000 [] 1000 [] 1000 [] [_____] 10⁻²⁰ 10 ² ² ² ^{10⁻²⁵} ^{10⁻²⁵} 10-2 Observed $\sigma_{95\% \text{ CL}}/\sigma_{\text{th}}$ CMS CMS CMS 10^{-3} ионо 10⁻²⁹ Vector med, Dirac DM, $g_{q} = 0.25$, $g_{DM} = 1$ Axial med, Dirac DM, $g_{n} = 0.25$, $g_{nm} = 1$ Vector med, Dirac DM, $g_q = 0.25$, $g_{DM} = 1$ 26 000 0000 ----- CMS exp. 90% CL CMS obs. 90% CL ····· CMS exp. 90% CL CMS obs. 90% CL ---- Median expected 95% CL ຫຼ¹ 10⁻³ LUX CDMSLite PICO-60 Picasso $\pm 1 \sigma_{\text{experiment}}$ CRESST-II Xenon-1T 800 10^{-3} IceCube bb --- IceCube tt 10⁻³³ Observed 95% CL PandaX-II Super-K bb 10⁻³⁶ Observed ± theory unc 10-35 600 $\Omega_c \times h^2 \ge 0.12$ 10-37 10-38 10-39 10⁻¹ 400 10-40 10-4 10-42 10⁻⁴³ 200 10-44 10-45 10⁻² 10-47 10-4 2500 1000 2000 0 500 1500 10² 10³ 10² 10 10 m_{DM} [GeV] m_{med} [GeV] 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) [Sec] [Sec] [Mag] م [Mag] م [Sec] [CMS But a lot of caveats! Observed $\sigma_{95\%}\,_{
m CL}/\sigma_{
m th}$ CMS Axial med, Dirac DM, $g_a = 0.25$, $g_{DM} = 1$ Axial med, Dirac DM, $g_{\rm r} = 0.25$, $g_{\rm DM}$ ····· CMS exp. 90% Cl CMS obs. 90% CL Vedian experted 95% CL - PICO-60 - Picasso Very model-dependent 10⁻³⁴ IceCube bb --- IceCube tī 800 Observed 95% Super-K bb 10⁻³⁶ Observed ± theory unc 600 $\Omega_c \times h^2 \ge 0.12$ 10⁻³⁸ 10-40 10⁻¹ **Similar results** 400 10-42 35.9 fp⁻¹ (13 TeV) ATLAS 200 10-44

10

Collider Constraint:

10²

10-27

10³

m_{DM} [GeV] ed, Dirac DM

 10^{-46}

10⁻²

2500

500

Francesco Pandolfi

0

1000

1500

2000

m_{med} [GeV]

Ie

on)

Irv

 10^{3}

m_{DM} [GeV]

Mono-H(bb): Tagging on Final State Radiation

- Similar signature to mono-V(qq)
 - Both '(X→qq)+ME_T'
- Yet very different probe: FSR, not ISR
 - Higgs ISR Yukawa-suppressed
 - Probing mediator-H coupling
 - Both for 2HDM+Z' and 2HDM+a

Not Just a Top-Up: Big Performance Boost

PRL 119 (2017) 181804

- Variable-radius track jets for H(bb)-tagging
 - $R \rightarrow R_{eff} \sim \rho/p_T$
 - Large efficiency gain at high mass

Francesco Pandolfi

- ♦ Object-based ME_T significance
 - Better performance for low-ME_T signals
 - 'Simple' ME_T affected by mismeasurements
 - Event-based significance worse for high- ϵ_s

Collider Constraints on Cosmos, 06.12.18

with given choice

of parameters

Setting limits in 2HDM+Z' framework *

1000

900

800

m_A [GeV]

Fxcluding m(A) up to 660 GeV and m(Z') up to 2.8 TeV

Maximal Yukawa with Mono-ttbar

RTT: Top-Tagging with Kinematics and Substructure

- Resolved Top Tagger (RTT) for jet triplets
 - Multivariate discriminant that combines kinematics and substructure
- Kinematics:
 - Highest b-tag \rightarrow b-jet
 - Kinematic fit to M_W for qq
 - Kinematic fit to M_{top} for bqq
- Then BDT discriminant with input variables:
 - Quark/gluon likelihood
 - **b-tag** discriminant
 - Angle between W(qq) and b-jet

2.2 fb⁻¹ (13 TeV)

Mono(tt) Interpreted in Simplified Models

Francesco Pandolfi

Adding Single-Top Brings Large Improvements

CMS-EXO-18-010 (accepted by JHEP)

Adding single-top categories brings up to 2.5× better limits for high M_{med}

- At low $M_{med} \sigma(tt+DM) > \sigma(t+DM)$, but $\sigma(t+DM)$ drops less rapidly with M_{med}
- For given M_{med} , single-top has slightly harder ME_T

Single-top dominant at high M_{med}

Francesco Pandolfi

Same limits nlotted in two different nlanes

21

An Important Consequence of Simplified Models

- Could **also** couple to other particles (eg leptons)
- * Visible searches (bump hunts) for mediator

DiJet: Different Strategies for Different Masses

- ✤ High mass (M > 1.5 TeV)
 - Resonance at rest, high energy jets
 - No problems with trigger
- Intermediate mass (0.5 < M < 1.5 TeV)</p>
 - High rate: cannot write full event
 - Analysis on reduced data format
- Low mass (0.2 < M < 0.5 TeV)</p>
 - Trigger on high- p_T photon or gluon ISR
- Very low mass (M < 0.3 TeV)</p>
 - ISR + boosted dijet (large jet + substructure)

High-Mass Dijet Search: Setting Limits on gq

CMS PAS EXO-17-026

Going to Lower Mass with Trigger-Level Objects

JHEP 08 (2018) 130

- Lower mass: higher QCD BG
 - Rate too high for trigger
 - Need reduced data format

- Solution: save HLT jet 4-momenta
 - CMS: 'Data scouting'
 - ATLAS: 'Trigger-Level Analysis'

Even Lower Mass: Triggering on ISR

ATLAS-CONF-2016-070 and CERN-EP-2017-280 (accepted by PLB)

- Use ISR to trigger photon or jet trigger paths: extend reach to lower mass
 - ISR+(two jets): down to 200 GeV
 ISR+(boosted): down to 100 GeV

Interplay of All Dijet Searches

Similar Approach with Dilepton Searches

- * Adding lepton coupling seems 'natural'
 - But it's an additional assumption
- If mediator couples with leptons: can use ee/µµ resonance searches
 - Similar to dijet re-interpretation

Exclusion Limits Are Very Sensitive to Couplings

What About Dark Energy?

- Supernovae Ia: universe expansion is accelerating
 - Existence of a 'fifth' **repulsive** force
 - New form of matter: dark energy
- Many new models, split in two categories:
 - Modifications to general relativity
 - Addition of new particles/fields

- Has been shown that two families of models have same phenomenology
 - So we can focus on particle description

Adding Dark Energy Operators to the SM

✤ EFT approach

- Dark energy as **scalar** field φ
- **Two** leading operators added to SM Lagrangian:

$$\mathcal{L}_{SM} \rightarrow \mathcal{L}_{SM} + \mathcal{L}_1 + \mathcal{L}_2 + \dots$$

 $\mathcal{L}_i \sim (M_i)^{-4}$

M_i characteristic energy (suppression factor)

Corresponding to:

Setting Limits on Dark Energy Operators

ATL-PHYS-PUB-2018-008

The Big Wrap-Up: Visible and Invisible Searches

The Big Wrap-Up: Visible and Invisible Searches

Why stop at 1 GeV? $\sigma \sim m_{DM} m_{nucl} / (m_{DM} + m_{nucl})$, breaks down for $m_{DM} \ll m_{nucl}$

What About Sub-GeV Mediators?

Historically, sub-GeV mediators jurisdiction of 'dark photon' searches

Dark photon: an additional U(1), connected to SM U(1) through kinetic mixing

Francesco Pandolfi

The Magkaraheten Decays

- Mixing parameter ε fixes strength of dark photon coupling
 - $m(A') \ll m(Z)$: A' interactions with SM fermions are **\gamma-like** with charge ϵQ

LHCb Search for A' Decaying to a Muon Pair

PRL 120 (2018) 061801

- Bump hunt in M(μμ) spectrum
 - Sensitive down to $m_{A'} = 2m_{\mu}$
 - Both prompt and displaced

- * No trigger! All events recorded
 - With **no selection** on M(µµ)

Much lower BG (main BG: $\gamma \rightarrow \mu \mu$ conversions)

Francesco Pandolfi

LHCb Limits

PRL 120 (2018) 061801

(first limits for M>10 GeV)

BaBar: New Results Six Years After Last Collision

PRL 113 (2014) 201801

Francesco Pandolfi

Perspectives for Dark Photon Searches

2 A kinetically mixed dark $U(1)_{\mathbf{C}}$

Francesco Pandolfi

In this spation, we review the theory of kinetic mixing hat when a higher dark Abali

U(1)_Y

U(1)_D

μ

Conclusions