EXOTIC SEARCHES WITH ATLAS AND CMS

Shahram Rahatlou

on behalf of ATLAS and CMS collaborations

SUSY 2016, Melbourne, 8 July 2016

Dipartimento di Fisica

SUSY VS EXOTICA

- SUST results often reported in $(m_0, m_{1/2})$ or (m_X, m_{LSP}) plane
- Large missing transverse energy usually primary signature
- In exotica, search for particles and resonances not necessarily needed or predicted in supersymmetry

SIGNATURE- VS TOPIC-BASED

- Same final state often probing very different models or topics

 2 leptons, 2jets + MET, lepton+jet+MET
- Topological presentation requires jumping between very different models
- Mostly a topic-based approach in this talk
 - easier to combine constraints on model from different topologies
 - Same final state is not simple re-interpretation
 - often optimization redone to deal with acceptance for very different models
 - different analysis strategy and signal extraction methods

- Many extensions of the SM have been developed over the past decades:
- Supersymmetry
- Extra-Dimensions
- Technicolor(s)
- Little Higgs
- No Higgs
- GUT
- Hidden Valley
- Leptoquarks
- Compositeness
- 4th generation (t', b')
- LRSM, heavy neutrino
- etc...

- 1 jet + MET
 jets + MET
- 1 lepton + MET
- Same-sign di-lepton
- Dilepton resonance
- Diphoton resonance
- Diphoton + MET
- Multileptons
- Lepton-jet resonance
- Lepton-photon resonance
- Gamma-jet resonance
- Diboson resonance
- Z+MET
- W/Z+Gamma resonance
- Top-antitop resonance
- Slow-moving particles
- Long-lived particles
- Top-antitop production
- Lepton-Jets
- Microscopic blackholes
- Dijet resonance
 - etc...

EXOTICA TIMELINE

- Rich variety of theoretical models and new particles
- Two-body resonances from day one: leptons, photons, jets
 - detector effects usually not critical
 - sensitive to bumps right away
- increase complexity and multiplicity of final state
 - better understanding and calibration of detector
- Final states with MET + X
- Really exotic signatures such as long-lived particles
 - control of detector conditions over longer period
 - ultimate calibration and alignment
 - optimisation of dedicated algorithms

Detector Understanding (time)

EXOTICA IN ONE PAGE

Resonances

RESONANCES AT 8 TEV

FACULTY OF MATHEMATICAL AND PHYSICAL SCIENC

acceptance of the analysis. Following the instructions detailed with the stape is parameter of the stape of the analysis. Following the instructions detailed with the double-sided CB introduced Shahramestimate the number of events for a generic signed model that desultain generated to be detailed. While different values of Γ_X are scanned,

IMPORTANCE OF ENERGY INCREASE

2015 data collected equivalent to 2012 dataset for Mx ~ 2-3 TeV

SPECTACULAR PERFORMANCE OF LHC IN 2016

9

Shahram Rahatlou, Roma Sapienza & INFN

LHC LAST NIGHT

https://op-webtools.web.cern.ch/vistar/vistars.php?usr=LHCLUMINOSITY

ALICE Target Instantaneous Lumi = 1.7 Hz/ub

LHCb Target Instantaneous Lumi = 322.67587 Hz/ub

SENSITIVITY WITH 2016 DATA SO FAR

HEAVY RESONANCES

BOOSTED TOPOLOGY

 $M_x < 1 \text{ TeV}$

see talks Monday afternoon covering these topologies in detail

$$M_x \sim 2 \text{ TeV}$$

DI-LEPTONS

• 0.08 events expected above 2.5 TeV

LEPTON FLAVOR VIOLATION

DI-JET AT 13 TEV

• High p_T trigger thresholds to cope with enormous cross section

TOP PARTNERS

Constraints in Run2 already competitive or better than Run I

0⊏ 600

10

8

2 0^L 100

DI-BOSON FINAL STATES

• Rich search program for both vector and scalar bosons

Signature	Final state	ATLAS	CMS				
γγ	YY combination	ATLAS-CONF-2015-081 10.1103/PhysRevLett.113.171801 10.1103/PhysRevD.92.032004 arXiv:1606.03833	CMS-PAS-EXO-15-004 CMS-PAS-EXO-12-045 10.1016/j.physletb.2015.09.062 arXiv:1606.04093				
γZ	γll γqq combination	ATLAS-CONF-2016-010 10.1016/j.physletb.2014.10.002 ATLAS-CONF-2016-010	CMS-PAS-EXO-16-019 CMS-PAS-HIG-16-014 CMS-PAS-EXO-16-020 CMS-PAS-EXO-16-021				
WW/WZ/ZZ	qqqq qqll qqlv qqvv combination	arXiv:1606.04833 arXiv:1606.04833 arXiv:1606.04833 arXiv:1606.04833 arXiv:1606.04833	CMS-PAS-EXO-15-002 10.1007/JHEP08(2014)174 CMS-PAS-EXO-15-002 CMS-PAS-B2G-16-004 CMS-PAS-EXO-15-002				
WH/ZH	bbll bblv bbvv combination	ATLAS-CONF-2015-074 ATLAS-CONF-2015-074 ATLAS-CONF-2015-074 ATLAS-CONF-2015-074	CMS-PAS-B2G-16-003 CMS-PAS-B2G-16-003 CMS-PAS-B2G-16-003 CMS-PAS-B2G-16-003				
Combination	of VV/VH		CMS-PAS-B2G-16-007				
нн	bbbb	arXiv:1606.04782	CMS-PAS-EXO-12-053				

Andreas Hinzmann (U Zurich)

VV AND VH PICTURE

IL IVV JUIVILIIINV IIILVINI IAILIN VUIVI

m_x [GeV]

ATLAS compatibility with 8 TeV

- Outstanding performance of LHC makes the next update interesting
 - both experiments shooting for updates with at least same luminosity
 - each experiment with almost x3 luminosity recorded so far

SIGNAL?

Daily diphoton theory report

Shahram Rahatlou, Roma Sapienza & INFN

SIGNAL?

Shahram Rahatlou, Roma Sapienza & INFN

WHAT ELSE?

Warped Geometries Example: 750 GeV Graviton KK-state

750 GeV G₁ diphoton rate

Hewett, Rizzo 1603.08250

SLAC

 $\sigma_{\gamma\gamma} = 4.86 \text{ fb} (1 + 2\gamma_0)/25 (5 \text{ TeV}/\Lambda_{\pi})^2$

- Naturally fits excess w/ IR-physics at few TeV
- 1st KK should be visible in other channels

ZZ Production

Channel	σ^{13} (fb)	σ^8 (fb)
$\sigma_{\gamma\gamma}$	5.0	1.18
σ_{gg}	40.0	9.44
σ_{ZZ}	7.48	1.77
σ_{WW}	14.6	3.45
σ_{hh}	2.48	0.59
$\sigma_{b\bar{b}}$	29.9	7.06
$\sigma_{t\bar{t}}$	23.9	5.64

- Gauge 1st KK ~ 566 GeV very weakly coupled
- Light' RS KK states accessible @LHC w/ natural hierarchy solution!

Z(II)+γ Spectrum

Z(qq)+γ Spectrum

• Merged jets and substructure analysis to reconstruct Z

Z+γ Picture

28

NO STONE UNTURNED: LOW-MASS DI-JET

- Dedicated triggers and data parking techniques to explore low-mass dijet
 - use trigger-level jet objects
 - dedicated jet calibration and corrections
 - not suffering from pre-scales due to huge hadronic trigger rates

SUMMARY OF RESONANCES

ATLAS Exotics Searches* - 95% CL Exclusion

 $\geq 1 j$

_

1 j

 ℓ, γ

_

2 e, µ

1 e, µ

13 TeV

1,2 1.5 Z'(30%) → tt

gKK → tt

300 fb

60 fb

Observed limit 95%CL (TeV)

0,6 0.9

0.3

Jets $\ddagger E_T^{miss} \int \mathcal{L} dt [fb^{-1}]$

Yes

_

_

3.2

20.3

20.3

MD

Ms

Mt

200 fb

200 fb

0 0,5 1 1,5 2 2,5 3 3,5

Observed limit 95%CL (TeV)

Status: March 2016

Model

Extra dimensions

ADD $G_{KK} + g/q$

ADD QBH $\rightarrow \ell q$

ADD non-resonant $\ell\ell$

ATLAS Preliminary

sio	ADD QBH	_	2 j	-	3.6	M _{th}				8.3 TeV	<i>n</i> = 6		1512.01530
ue ue	ADD BH high $\sum p_T$	\geq 1 e, μ	≥ 2 j	-	3.2	M _{th}				8.2 TeV	$n = 6, M_D = 3$ TeV, r	ot BH	1606.02265
Ĕ	ADD BH multijet	_	≥ 3 j	-	3.6	M _{th}				9.55 TeV	$n = 6, M_D = 3$ TeV, r	ot BH	1512.02586
g	$RS1 \ G_{KK} \to \ell\ell$	2 e, µ	-	-	20.3	G _{KK} mass		2.68	TeV	vector-like	- мианкоран		140 5745250112110
ra	RS1 $G_{KK} \rightarrow \gamma \gamma$	2γ	-	-	20.3	G _{KK} mass		2.66	TeV .	productio	$k/\underline{M}_{Pl} = 0.1$	/	¹⁵⁰⁴ qüfarks
	Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell v$	$1 e, \mu$	1 J	Yes	3.2	G _{KK} mass	1.06	TeV			$k/M_{Pl} = 1.0$	/	ATLAS-CONF-2015-075
ш	Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$	-	4 b	-	3.2	G _{KK} mass	480-7 <mark>70 GeV</mark>		$ \bigcirc \rightarrow aW $		$k/\overline{M}_{Pl} = 1.0$	711 0	1606.04782
	Bulk RS $g_{KK} \rightarrow tt$	$1 e, \mu$	\geq 1 b, \geq 1J/2	j Yes	20.3	g _{KK} mass		2.2 TeV	Q / YW		BR = 0.925	Z (1.4	⁷⁰) 7 1505.07018
	2UED / RPP	$1 e, \mu$	\geq 2 b, \geq 4 j	Yes	3.2	KK mass		1.46 TeV			Tier (1,1), BR(A ^(1,1) –	$\rightarrow tt) = 1$	ATLAS-CONF-2016-013
_	COM 7/	2011			2.0	7/ mass			$\downarrow \rightarrow tH$			Z'(10	$\%) \rightarrow tt$
	$SSWZ' \rightarrow \mathcal{U}$	2 e, µ	_	-	3.2	Z mass		0.00 T-V	3.4 Tev				ATLAS-CONF-2015-070
SL	SSIVI $Z^{*} \rightarrow \tau \tau$	2τ	-	-	19.5	Z' mass		2.02 TeV	T → tZ			d	$KK \rightarrow IL_{22,07177}$
IQ	Leptophobic $Z^* \rightarrow BB$	_	26	_	3.2	Z' mass		1.5 Iev				4	1603.08791
ő	SSM $W' \to \ell v$	1 e, µ	_	Yes	3.2	W' mass			4.07 TeV				1606.03977
d é	HVI $VV' \rightarrow VVZ \rightarrow qqvv \text{ model A}$	0 e, µ	1 J	Yes	3.2	W' mass		1.6 leV	1 / 000		$g_V = 1$		AILASCONF-2015-068
ge	HVT $W' \rightarrow WZ \rightarrow qqqq$ model A	-	2 J	-	3.2	W' mass	1	1.38-1.6 TeV			$g_V = 1$		ATLAS-CONF-2015-073
au	HVT $W' \rightarrow WH \rightarrow \ell \nu bb$ model B	$1 e, \mu$	1-2 b, 1-0 j	Yes	3.2	W' mass		1.62 TeV	B → bH		$g_V = 3$	W'→tbN/	MATM/WWW.ONF-2015-074
Ğ	$HVT Z' \rightarrow ZH \rightarrow vvbb \text{ model } B$	0 e, µ	1-2 b, 1-0 j	Yes	3.2	Z' mass		1.76 TeV			$g_V = 3$		ATLAS-CONF-2015-074
	LRSM $W'_R \rightarrow tb$	$1 e, \mu$	2 b, 0-1 j	Yes	20.3	W' mass		1.92 TeV	B → bZ			$W' \rightarrow tb N'$	W M W 410.4103
	LRSM $W'_R \to tb$	0 e, µ	\geq 1 b, 1 J	-	20.3	W' mass		1.76 TeV					1408.0886
	$V = 0$ $TT \rightarrow Ht + X$	1	>2h >3i	Voc	20.3	Timace	855 Gol	1	B → tW		T in (TB) doublet		$P_{(a)} \rightarrow \#_{505,04306}$
> 10	$V = Q + T \rightarrow T = T + T$	1 ο μ	> 1 h > 3 i	Voc	20.0	V mass	770 GoV	*			V in (BV) doublet	2(1	1505.04306
5ž		1 ο μ	> 2h > 3i	Vee	20.3	P mass	725 CoV				isospin singlet	71/46	1505.04506
ea	$V \cup Q D D \rightarrow H D + X$	$2/22$ μ	$\geq 20, \geq 5$	tes	20.3	D mass	735 Gev		∧5/3 → tw		B in (BV) doublet	Z'(10	$() \rightarrow (0) = 0$
ТŖ	$V \downarrow Q DD \rightarrow ZD + X$	2/23 e, µ	22/21D	 	20.3	D mass	755 GeV				D III (D, I) doublet		1409.5500
	$V \models Q = V V q V V q$	1 e, µ	24j ∖16 \5;	res	20.3		690 GeV		X5/3 → tW			Z'(30	$(\%) \rightarrow \text{tt}_{500,05405}$
	$T_{5/3} \rightarrow VVL$	ιe,μ	≥ 1 D, ≥ 5 J	Yes	20.3	1 5/3 mass	840 Gev						1503.05425
									T → bW			C	KK → tt
	Vector-like quark pair		Rese	onances	to heavy		Resonances to					9	
	production		quar	rks			dibosons			0 0,3 0	6 0,9 1,2	1,5	0 0,5 1 1,
	$0 \rightarrow 0W$	7'/1	29() -> #		fle	radion → HH	C (h			Observed I	imit 95%CL (TeV)		Observed I
		Ζ(1.	.2%) → u	c		Tadion + m	8 TeV						
	T → tH 35 fb	Z'(1	0%) → tt		15 fb	$W' \rightarrow WH$	1 10 fb						
					- 0	TeV	13 TeV			vector-like	e quark single		
	$T \rightarrow tZ$ 25 fb		gKK → tt		40 fb		1 13 fb			productio	n		
	$T \rightarrow bW$ 7 fb		$W' \rightarrow th$	40 f	ы 1:	3 TeV $G_{bulk}^+ \rightarrow WW$	20 fb			-			
				40 1		-		–					
	B → bH 7 fb	W' → tb	$M\nu_R < M_{W'}$	50	fb	$G_{bulk}^+ \rightarrow ZZ$	Z 30 fb	$I \rightarrow tH$	C(VVD)=1.5	8			
		140 0				W' → VW HVT(R	28 fb				13 le	M I	
	$B \rightarrow DZ$ 35 fb	W' → tb	$M\nu_R > M_{W'}$	5	0 fb			T → tl	H c(Zt)=2.5	90) fb		
	B → tW 9 fb	Z'((1%) → tt	100 1	fb	W' → WH HVT(B) 40 fb						
	81	eV				7' → \/H H\/T/P	18 fb			0 0,4 0	8 1,2 1,6	2	
	X5/3 → tW 4 fb	Z'(1	0%) → tt		120 fb					Oheerry		n	

0 0,5 1 1,5 2

Observed limit 95%CL (TeV)

2,5

Observed limit 95%CL (TeV)

X5/3 → tW

 $T \rightarrow bW$

SUMMARY OF RESONANCES

ATLAS Exotics Searches* - 95% CL Exclusion

Status: March 2016

 $\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1}$

0.3

0,6 0.9

Observed limit 95%CL (TeV)

1.2 1.5 0 0,5 1 1,5 2 2,5 3 3,5

Observed limit 95%CL (TeV)

X + MET

- Radiated by initial partons necessary to trigger the event
- Presence of high energy photon/W/Z/Higgs or jet(s) in addition to large missing transverse energy
- Results interpreted in terms of cross section on nucleons

X + MET INTERPRETATION

- Original intent
 - complementary approach to direct searches at low mass
- Criticism to use of effective theories
 - mediator mass assumed to be negligible at LHC
- Suggestions to use SUSY approach
 - simplified models for final state
 - provide 2D constraints in (m_X, m_{mediator}) plane

X + MET SIGNATURES AFTER RUN1

 \overline{q}

X + MET INTERPRETATION

LONG-LIVED OBJECTS

- Most exotic part of exotic program
- Search for long-lived particles relies on detector features more than other exotic searches
 - dedicated trigger
 - stopped particles
 - dedicated reconstruction algorithms
 - muon reconstruction: heavy stable charged particles
 - tracking: disappearing tracks
 - dedicated detector calibration
 - calorimeter time calibration
- Many searches in Run1 but no discrepancy or excess
- So far only the classic heavy stable charged particle search at 13 TeV

OUTLOOK

• Extensive direct search program now starting to probe new territories beyond Standard Model - Only most basic and simplistic theories probed at this point many assume strong coupling Some old bumps from Run I are gone At least one interesting one has appeared • Impressive LHC performance in 2016 -data should address YY bump by end of year

PROSPECTS

- These next two years critical for future of searches
 - Happy Ending: New particles discovered
 - If mass not too large, accumulate data with high-luminosity LHC to study properties and define next step
 - If heavy, aim at upgrade of energy
 - No particles found
 - Indirect search through Higgs couplings becomes critical
 - Maybe new particles weakly coupled to known particles
 - Use high-luminosity LHC to probe weakly coupled scenario

