Highlights from CMS and LHCb

Shahram Rahatlou

On behalf of the CMS and LHCb collaborations

ICHEP2018 SEOUL XXXIX INTERNATIONAL CONFERENCE ON high energy PHYSICS JULY 4 - 11, 2018 COEX, SEOUL

LHC AFTER HIGGS DISCOVERY

Intense scrutiny of Higgs and Yukawa sector

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \bar{\psi} D \psi$$

$$+ |D_{\mu}\phi|^{2} - V(H)$$
Precision Electroweak and QCD
Higgs properties Higgs self interaction

 $+Y_{ij}\psi_i\psi_j\phi + \mathrm{h.}c.$

Higgs coupling to bosons and fermions CKM matrix and CP Violation

· While keeping a wide open eye on new phenomena

New light and heavy particles Lepton flavour universality violation Leptoquarks SUSY Long-lived particles Dark matter

OUTLINE

- CMS and LHCb have produced more than 100 results in a year
 - A lot more known about Higgs than just 2 years ago
 - Extensive and precise probe of CKM paradigm
 - Rich and diverse results at low energy in charm and beauty physics
 - Extensive search program at high mass for new phenomena
 - Differential measurements with top quark, Higgs, W and Z bosons
 - Probe of QCD in proton-proton and heavy ion collisions

See tomorrow's talks covering these results

New Results: http://cms.cern/news/ICHEP-2018

- A taste of CMS and LHCb programs and prospects for data to be collected starting in 2021 (Run3)
- Special thanks to operations and accelerator teams of the LHC for sustained stellar performance

Shahram Rahatlou, Roma Sapienza & INFN

LHC PERFORMANCE

• LHC to provide 150 fb⁻¹ to CMS and more than 5 fb⁻¹ to LHCb in Run2

More data and challenges for operation and physics analysis

- increased number of simultaneous interactions

Improved analysis techniques and operations key for successful program

- Excellent tracking and superb particle identification key for flavor physics
 - Relative production ratio: B_d/B_u/B_s/B_c/b-baryons 4:4:1:0.01:1

CMS EVOLUTION

Muon Detectors Drift tubes (VME $\rightarrow \mu TCA ROS$) **Resistive Plate chambers:** Cathode strip chambers; GEM slice test (GE1/1)

and 6 modules

Run1: 3 layers

CMS PERFORMANCE IN 2018

HIGGS FROM DISCOVERY TO PRECISION

YUKAWA INTERACTION

Phys. Lett. B 780 (2017) 501

g 0000000

g 0000000

Η

- Observation of direct coupling of Higgs to top by CMS in April
 - Observation of H→ττ by CMS in 2017 Phys. Lett. B 779 (2017) 283
 - Evidence for H→bb also in 2017
- Establishes direct tree-level coupling to up-type quarks
 - Additional data to be used for coupling to b quarks

Nearing theory-limited territory with just 2016 data

Shahram Rahatlou, Roma Sapienza & INFN

Most Precise y

• Dalitz analysis of decays $B^- \rightarrow DK^-$

arxiv:1806.01202

- both kaons and pions
- Intervals of D⁰-D⁰bar
 strong phase to maximise sensitivity
 - strong phase measured by CLEO-c

$$\gamma = (80^{+10}_{-9})^{\circ}$$

Run2 data critical for this measurement

MEASUREMENT OF Y AT LHCb

Some tension between different decay modes

LEPTON FLAVOR UNIVERSALITY INDIRECT NEW PHYSICS

ANOMALIES AT TREE LEVEL

Extending study of tree-level anomalies to B_c sector with J/psi

ANOMALIES IN PENGUINS

PRL 113 (2014) 151601, JHEP 08 (2017) 055, Run 1 data, 3 fb-1

- Discrepancies in $b \rightarrow sll$ transitions at BaBar, Belle, and LHCb
 - Differential branching fractions
- Analysis with Run2 data underway at LHCb
 - challenging precision analysis over multi-year data sample
 - Also adding new final states, e.g. $B_s \rightarrow \varphi \mid \mid \mid \mid$
- Plan to perform measurement at CMS with improved low-momentum electron reconstruction

- Some discrepancy observed also in angular distributions
 - Not as compelling as in rates
 - Very large uncertainties
 - requires full Run2 statistics
- Dedicated triggers in CMS in 2017 to increase statistics for analysis at end of Run2

TACKLING ANOMALIES AT HIGH MASS

 Tree-level explanation of B anomalies with preferred coupling to 2nd and 3rd generations

β**=0**

vvqq

980

V: 1790

(q=udsc)

vv tt

1020

V: 1780

vvbb

1100

V: 1810

β=1

ee qq

1130

μμ **qq** 1530

ττbb

850

ττ tt

900

μµ tt

1420

τtb

λ=1: 740

- Pair- and single-production of leptoquarks
- Also with DM candidate emission

EXOTICS AND SPECTROSCOPY

LIFETIME OF $\Omega_{\rm C}^0$

- Measurement of Ω_{c}^{0} lifetime with respect to well measured D+ lifetime
 - copious reference sample $B \to D^+ (\to K^- \pi^+ \pi^+) \mu \nu_\mu X$

DARK PHOTON

PRL 120, 061801 (2018) Run1 1.6 fb⁻¹

Addition of di-electron final state

SEARCHES

- Biggest jump in mass limits with increased energy at start of Run2
 - Assuming maximal coupling to SM particles
 - Most searches published with 36 fb-1 of data
- With full Run2 data focus on exploring weakly coupled phenomena
 - Expect new publications with 150 fb⁻¹

SUPERSYMMETRY

Higgs now used to probe electroweak production of supersymmetry
 In just 6 years from discovery to Higgs tagging

STANDARD MODEL New Physics through Precision

VECTOR BOSON SCATTERING

- Quartic gauge couplings known exactly in SM and sensitive to new physics contributions
 - Disentangle QCD and EW contribution through jet kinematics
- Observed significance: 1.90 \overrightarrow{u} - expected 2.70 $\sigma/\sigma_{\mathrm{S}M} = 0.64^{+0.45}_{-0.37}$ 20
- Important milestone for Run2 and longterm LHC program towards study of WW scattering
 - Evidence for same-sign WW already published in 2017
 Phys. Rev. Lett. 120, 081801

TOWARDS HIGH LUMINOSITY *WITH UPGRADED DETECTORS*

LFUV WITH $B_{s} \rightarrow K^{*0} \mu^{+}\mu^{-}$

- Heavily suppressed b \rightarrow dll transition in Standard Model
 - complementary to b \rightarrow sll transitions in B⁰_d decays
- Evidence of 3.4σ (38 ± 12 events) consistent with prediction

 $\mathcal{B}(B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-) = [2.9 \pm 1.0 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.3 \,(\text{norm})] \times 10^{-8})$

- Sensitivity with Run3 possibly better than current Bd measurement

arXiv:1804.07167,

Run 1+2, 4.6 fb⁻¹

RARE HIGGS DECAYS

- Already tackling H $\rightarrow \mu\mu$ thanks to excellent detector performance
 - Looking forward to updated result with 150 fb⁻¹

HIGGS SELF-INTERACTION

• Understanding Higgs sector requires measurement of its self-interaction

OUTLOOK

- CMS getting close to establishing Yukawa interaction for third generation fermions
 - Run 2 data should provide first hint for 2nd generation
 - First results paving the way for Run3 and HL-LHC program
- LHCb entering precision measurement territory for angle γ
 - Also extending systematic study of CP violation to rare B decays
 - Tremendous advancement also in charm and beauty spectroscopy
- Both experiments investigating intriguing flavor anomalies
 - Adding new final states at low mass
 - Tackling possible sources of anomalies at high mass
- Run2 an opportunity to bridge the gap between Searches and Standard Model physics
 - Precision top and electroweak measurements sensitive to new physics

Upgraded detectors key for a successful physics program at high luminosity

Shahram Rahatlou, Roma Sapienza & INFN

LHCb UPGRADE FOR RUN 3 IN A SNAPSHOT

All sub-detectors read out at 40 MHz for a fully software trigger

CERN-LHCC-2012-007

CMS PHASE II UPGRADE

L1-Trigger/HLT/DAQ

https://cds.cern.ch/record/2283192 https://cds.cern.ch/record/2283193

- Tracks in L1-Trigger at 40 MHz for 750 kHz PFlow-like selection rate
- HLT output 7.5 kHz

Calorimeter Endcap

https://cds.cern.ch/record/2293646

- Si, Scint+SiPM in Pb-W-SS
- 3D shower topology with precise timing

Barrel Calorimeters

https://cds.cern.ch/record/2283187

- ECAL crystal granularity readout at 40 MHz with precise timing for e/γ at 30 GeV
- ECAL and HCAL new Back-End boards

Muon systems

- https://cds.cern.ch/record/2283189
- DT & CSC new FE/BE readout
- New GEM/RPC 1.6 < η < 2.4
- Extended coverage to $\eta \simeq 3$

Beam Radiation Instr. and Luminosity, and Common Systems and Infrastructure

https://cds.cern.ch/record/2020886

Tracker https://cds.cern.ch/record/2272264

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to $\eta\simeq 3.8$

MIP Timing Detector https://cds.cern.ch/record/2296612

- ~ 30 ps resolution
- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes