

Precision timing detectors

Quest for new physics at High Luminosity LHC

ELECTRON

ARGED HADR

MUON

ITRAL HADRO

Livia Soffi

Challenges in the future of LHC:

Scientific and experimental problems and a joint solution

Precision timing detectors: quest for new physics at High Luminosity LHC

Run 1 & 2 Legacy

Precision timing detectors: quest for new physics at High Luminosity LHC

Run 1 & 2 Legacy

Precision timing detectors: quest for new physics at High Luminosity LHC

Quest for New Physics at Colliders

• Indirect searches: see effects caused by potential new particles

• Direct searches: produce directly new particles

A Path Toward Discovery at LHC

Missing Energy, Time of Arrival, Jet Multiplicity..

prmiss[GeV]

• **Excess in the tail** of kinematic distribution

Simplicity of final state

Detector Understanding

Precision timing detectors: quest for new physics at High Luminosity LHC

Golden way for early

discovery

Non Conventional Signatures w/ MTD

Dedicated **trigger** algorithms

Unique object reconstruction, discriminating variables, or data processing

Re-defined analyses
 strategies w/ atypical backgrounds

Low Mass Region Exploration of TeV scale 137 fb⁻¹ (standard triggers) and 96.6 fb⁻¹ (scouting triggers) (13 TeV) 137 fb⁻¹ (13 TeV) 10² 0^{2} CMS $\sigma BA [pb]$ 95% C.L. observed limit CMS 95% CL limits 95% C.L. median expected limit 10 Fit 10 Ratio 68% confidence interval for expected limit Observed method method 95% confidence interval for expected limit $\sigma imes B imes A$ (pb) ± 1 std. deviation ± 2 std. deviation quark-quark 10 10^{-1} 10⁻² 10 scouting triggers standard triggers 10^{-3} 10⁻³ 20 30 40 50 100 200 11 Resonance mass (GeV) 10 DM mediator Axigluon/coloron Scalar diquark 10⁻⁵ 3 5 8 2 6 7 Resonance mass [TeV]

No sign of BSM physics → New Physics is heavier, lighter, less abundant or more weird w.r.t. we could detect so far

Heading to the future at LHC

Inst. Lumi: 2×10³⁴ cm⁻² s⁻¹ 5-7.5×10³⁴ cm⁻² s⁻¹ Int. Lumi: ~ 150fb⁻¹ ~ 300fb⁻¹ ~ 300fb⁻¹

HL-LHC upgrade greatly expand physics potential of the LHC

- Rare and statistically limited SM and BSM processes
- New channels w/ low cross sections or small coupling strengths

Physics Perfomance & Detector Upgrade

More p-p interaction (pileup - PU) per bunch crossing

Need performant and flexible detector to allow a deep exploration of corners of phase space

9

Physics Perfomance & Detector Upgrade

More p-p interaction (pileup - PU) per bunch crossing

Need performant and flexible detector to allow a deep exploration of corners of phase space

higher detector **granularity** to reduce occupancy, increased **bandwidth** to accomodate higher data rates

Trigger rates

Pileup

higher output rate of interesting events and **improved discriminating power** of the event selection

improved radiation hardness

Basic Idea: Use track timing for a 4D vertex reconstruction: correct tracks-vertex association

Significantly reduce "effective" vertex line density

30 ps needed to recover LHC performance

 $\left| \left(\right) \right|$

Precision Timing for PU mitigation

Beam1

Precision timing detectors: quest for new physics at High Luminosity LHC

CMS Global Timing Concept at HL-LHC

Precision timing detectors: quest for new physics at High Luminosity LHC

MTD: Mip Timing Detector Design Overview

ETL: Si with internal gain (LGAD):

- On the CE nose: 1.6 < |η| < 3.0
- Radius: 315 < R < 1200 mm
- Position in z: ±3.0 m (45 mm thick)
- Surface ~14 m²; ~8.5M channels
- Fluence at 4 ab⁻¹: up to 2x10¹⁵ n_{eg}/cm²

13

MIP Timing with ~30 ps precision Acceptance: $|\eta| < 3.0, p_T > 0.7 GeV$ 4 mm thick LYSO:Ce layer in Barrel

BTL Geometry and Sensors

- LYSO:Ce crystal bars as scintillators
- Silicon Photomultipliers as photosensors (one SiPM per bar side)
- Arrays of LYSO crystal bars (50×3 mm2) aligned in z direction

The CMS MTD Project

- MTD project formally approved by CERN Research Board end of '19.
- R&D to define detector design completed
- CMS Rome group leading resonsability on LYSO crystals characterization

What the <u>we know we can</u> <u>do with MTD..</u>

Charged Long Lived Particles at HL-LHC

• Heavy, long-lived, charged particles: slow moving compared to SM muons and hadrons

Heavy-Stable-Charged-Particles(HSCP): SUSY **stau** and **gluino**

- Depending on mass and charge: anomalously high dE/dx and longer time-of-flight
- •<u>Today</u>: tracker dE/dx and time-of-flight to the muon system e.g. HSCP masses > 100 GeV $\rightarrow \beta < 0.9$

 $\sigma < 5 \text{ ns}$

Precision timing detectors: quest for new physics at High Luminosity LHC

HSCP with MTD at HL-LHC

- MTD allows to reduce the uncertainty in 1/ β to improve the discrimination power and signal efficiency

HSCP with MTD at HL-LHC

- Mass of the HSCP can also be reconstructed using β and the 4-momentum

Neutral Long Lived Particles at HL-LHC

 Measure boost of neutral long lived particles from coordinates and time of primary and secondary vertices w/ MTD:

 $\vec{\beta}_P^{LAB} = \frac{1}{c} \cdot \frac{\vec{D}}{T_v - T_0} = \frac{\vec{P}_P^{LAB}}{E_P^{LAB}}$

 $\tilde{\chi}_1^0 \rightarrow GZ$

• Boost the visible system energy in the LLP rest frame and compute its mass

Assume mass on invisible object

Signatures with Delayed Photons

 Gluino production with a Long Lived neutralino decaying into photon and Gravitino

• Photons arrive on ECAL delayed

<u>Today</u>: ECAL based analysis using ECAL Timing

$$t_{\gamma} = t_{vtx} + t_{flight}$$

Dominated by **beamspot**: σ = 180 ps

Dominated by ECAL σ < 100 ps

Delayed Photons Detection

CHARGED HADRON

Time compatible with **relativistic particle from IP** Time sensibly increase with parent particle lifetime O(ns)

Х

Delayed Photons Legacy at Run 2

Delayed Photons Legacy at Run 2

Precision timing detectors: quest for new physics at High Luminosity LHC

Converted Delayed Photons w/ MTD

- Last CMS results with displaced photons using conversions from 8 TeV
- Eventually extend delayed photons search with **MTD** including converted photons

Displaced Jets at CMS Run 2

- Long-lived gluinos give rise to jets from displaced vertex
- •<u>Today</u>: Use time from **ECAL cells to match the calo-jets** complementary to tracker-based analysis(> 100 cm)
- Non Collision Backgrounds

Displaced Jets w/ MTD I

Generator-level study

- Calculate ∆t of arrival to MTD for each jet constituent
- Smear time w/ MTD resolution (30ps)
- Jet time = average of constituents' time

MTD L_{SM} L_X $\Delta t = \frac{L_{\rm X}}{\beta_{\rm X}} + \frac{L_{\rm q}}{\beta_{\rm q}} - \frac{L_{\rm SM}}{\beta_{\rm SM}}$

Jet

arXiv:1805.05957 arXiv:1806.07396 arXiv:1905.07772

Displaced Jets w/ MTD II

- Upper limits calculated working with a zero background assumption and L = 3 ab⁻¹.
- Background effieciency checked with QCD MC to be < 10-6

• Limits competitive on the 1000-10000 mm region with dedicated experiments

What the we think we could do with MTD..

p

 $Z_{\rm D}$

Comparing to LHCb Sensitivity

 <u>Today</u>: Only prompt bump search with muons reconstructed in tracker and muon system

Precision timing detectors: quest for new physics at High Luminosity LHC

Comparing to LHCb Sensitivity

 <u>Today</u>: Only prompt bump search with muons reconstructed in tracker and muon system

Dark photons with MTD at HL-LHC I

- Improve lepton performance at low pt
 - Extend scouting dataset **acceptance** (up to 3rd pixel layer)
- Lepton ID benefit from additional information from MTD and reject background especially from PU at low pT

tracks are **space/time-associated** with the primary vertex

Dark photons with MTD at HL-LHC II

 Improve lepton performance at low pt

• Extend search to dielectrons channel combining MTD with ECAL measurement

 Extend dilepton search to displaced signals to explore displaced dark photons production

What the we would like to do with MTD in the future..

CMS Timing Trigger at HL-LHC

Timing online from the ECAL, HCAL, RPCs in the Phase2 L1 Trigger
Displaced tracks up to ~50 mm will be available at L1

CMS Timing Trigger at HL-LHC

Timing online from the ECAL, HCAL, RPCs in the Phase2 L1 Trigger
Displaced tracks up to ~50 mm will be available at L1

Motivation for MTD at L1

Delay between LL object and PV

• Seed triggering on large time differences between electron/muon/jet/photon and the PV.

Delay between two LL objects

 Time difference between LLP (which can be also large)

Discrimination on beta

- Seed on low beta particles
- Path length / time diff wrt PV

Delay between prompt and LL object

 Seed triggering on large time differences between electron/muon/jet/photon and a prompt object.

Pile-up cleaning

 Cleaning tracks entering into other displaced object algorithms.

L1 Jet Time with MTD

- Level-1 Calorimeter Jets are matched to MTD timing hits in a cone of 0.4 around the central axis of the Calo Jet
- The L1 Time of a jet is the total time / number of hits

State of the art: CMS MTD @L1

L1 Rates reduction is a compelling reason to allow the MTD to be part of the Level-1 Trigger

- Already the plan for the BTL
- Would need to be added to the ETL

For now it has been decided that this is not within the CMS Phase 2 baseline however there is space to strengthen the physics case for a L1 trigger and we will keep working on it in the next year!

Work w/ Isobel Ojavo

Conclusions

- CMS MTD project: more effective timing detector for HL-LHC
 - Maintain current LHC performance ٠
 - Withstand radiation damage effects and high pileup rate
- Rediscovered interested in long lived particles and detector • based signatures

Conclusions

- CMS MTD project: more effective timing detector for HL-LHC
 - Maintain current LHC performance
 - Withstand radiation damage effects and high pileup rate
- Rediscovered interested in long lived particles and detector based signatures
 - MTD brings novel search capabilities
 - Probe unexplored phase space regions
 - Competitive with dedicated experiments

Backup