

Search for new physics in high mass diphoton events in CMS

C.Rovelli INFN Sezione di Roma

Motivation

Fully reconstructed resonances: simplest way to discover new particles

Statistically significant peak over a smooth background

- ✓ experimentally robust
- ✓ small systematics
- ✓ difficult for unknown backgrounds to mimic
- => simple yet striking signature!

The most important search method when new energies are explored

- ✓ particularly relevant at LHC Run2 startup
- ✓ model independent probe to new physics

Resonances in past discoveries

Clean final state at hadron colliders

1) Define the event selection: 2 isolated photons

✓ must be loose and model-independent

Clean final state at hadron colliders

1) Define the event selection: 2 isolated photons

✓ must be loose and model-independent

2) Reconstruct the $\gamma\gamma$ invariant mass

$$M = \sqrt{2E_1E_2(1 - \cos\theta)}$$

- ✓ photon reconstruction
- ✓ detector resolution and scale
- ✓ dedicated vertex identification techniques

Clean final state at hadron colliders

1) Define the event selection: 2 isolated photons

✓ must be loose and model-independent

2) Reconstruct the yy invariant mass

$$M = \sqrt{2E_1E_2(1 - \cos\theta)}$$

- ✓ photon reconstruction
- ✓ detector resolution and scale
- ✓ dedicated vertex identification techniques

3) Signal extraction

Clean final state at hadron colliders

1) Define the event selection: 2 isolated photons

✓ must be loose and model-independent

2) Reconstruct the yy invariant mass:

 $M = \sqrt{2E_1E_2(1-\cos\theta)}$ photon reconstruction
detector resolution and scale
dedicated vertex identification techniques

Crucial expertise in reconstruction and detector

Diphoton search roadmap

R&D on ECAL elements. Construction and commissioning First checks and measurements with candles

2010

Searching for the "expected": Higgs

2011/2012

Searching for unexpected

now

<=2009

100

M(e⁺e⁻) [GeV]

-5

Leading contribution of Roma CMS group to all these aspects 8

CMS Electromagnetic calorimeter

Homogeneous lead tungstate crystal calorimeter

- 75848 PbWO₄ crystals
- Barrel (EB): |η|<1.48
- Endcaps (EE): 1.48<|η|<3

Design energy resolution: ~0.5% for E(γ)>100GeV

Critical issues:

- Transparency loss due to radiation damage
- ✓ Precision of in-situ calibration

Crystal transparency

Relative crystals response to laser light vs time

Stable energy scale achieved
after laser corrections
in prompt reconstruction
Barrel:
✓ average signal loss ~6%
✓ RMS stability ~0.15%

Energy scale and resolution

Prompt reconstruction used for the analysis. New calibration coefficients (2015 data) available.

Significant improvement in energy resolution with new calibrations:

- ✓ barrel: resolution ~Run1
- ✓ endcaps: still worse (statistical precision)

Energy scale and resolution checked in data => analysis-level corrections applied

Photons

Photon =

energy deposits in clusters of ECAL crystals

 \checkmark clustering optimized to have good resolution

Reconstruction and selection strategies:

- \checkmark tuned on simulation and validated in data
- ✓ main control samples: Z->ee and Z-> $\mu\mu\gamma$

High mass diphoton searches

Ref	Title	M _x [GeV]	√s [TeV]
CMS-PAS- EXO-15-004	Search for new physics in high mass diphoton events in proton-proton collisions at √s = 13 TeV	500-4500	13
PLB750 (2015) 494–519	Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at √s = 8 TeV	150-850	8
CMS-PAS- EXO-12-045	Search for high-mass diphoton resonances in pp collisions at Vs = 8 TeV with the CMS Detector	500-3000	8

CMS operation @ 13TeV

CMS Integrated Luminosity, pp, 2015, $\sqrt{s}=$ 13 TeV

2015 operations strongly affected by a contamination of the magnet cold box
 14
 Thanks to the effort of many, ~¾ of delivered luminosity collected with full B field

Analysis in a nutshell

- 1) Define the event selection: 2 isolated photons
- 2) Reconstruct the yy invariant mass:
- 3) Signal extraction

Some considerations:

- ✓ Analysis built on SM Higgs search experience
 ✓ same techniques used
- ✓ Only solid techniques exploited
 - ✓ nothing very fancy for this first round
- ✓ Selection developed before looking to the data:
 - ✓ fully blind analysis
- => Goal: have a robust analysis up to high p_T

Event selection

Simple event selection

- ✓ HLT: 2 photons, p_T>60 GeV
- ✓ Offline selection:
 - ✓ p_T > 75GeV
 - ✓ ECAL fiducial region
 - \checkmark dedicated photon selection

✓ 2 event categories:

- ✓ EBEB: both γ in the barrel
- ✓ EBEE: one γ in EB, one in EE
- \checkmark events with 2γ in EE discarded

Zee to check efficiencies

 \checkmark data/MC scale factors compatible with 1, constant at high p_T

Zee and high mass DY to check scale and resolution

✓ results compatible within 0.5%

Signal modelling

Signal $m_{\gamma\gamma}$ shape:

 ✓ convolution of gen-level mass shape (PYTHIA) and detector resolution

$m_{\rm G}~({\rm GeV})$	category	ñ	FWHM (GeV)	ñ	FWHM (GeV)
500	EBEB	0.01	14	0.2	36
500	EBEE	0.01	22	0.2	42
1000	EBEB	0.01	27	0.2	74
1000	EBEE	0.01	43	0.2	85

Backgrounds

Dominant contribution: 2 prompt photons

QCD and photon+jets: <10% (20%) in EBEB (EBEE)

Background modelling

Background $m_{\gamma\gamma}$ shape: \checkmark parametric fit to data $f(m_{\gamma\gamma}) = m_{\gamma\gamma}^{a+b \cdot \log(m_{\gamma\gamma})}$

 \checkmark model coefficients: nuisance parameters in the hypothesis test

Background model

Background m_{vv} shape:

- ✓ parametric fit to data $f(m_{\gamma\gamma}) = m_{\gamma\gamma}^{a+b \cdot \log(m_{\gamma\gamma})}$
- \checkmark model coefficients: nuisance parameters in the hypothesis test

Background fit accuracy determined using MC

- ✓ possible mis-modelling:
 <1/2 background statistical uncertainty
- extra uncertainty: signal-like component added to the model

Background model

Background m_{vv} shape:

✓ possible mis-modelling:

extra uncertainty:

✓ parametric fit to data $f(m_{\gamma\gamma}) = m_{\gamma\gamma}^{a+b \cdot \log(m_{\gamma\gamma})}$

<1/2 of background statistical uncertainty

✓ model coefficients: nuisance parameters in the hypothesis test

Can we trust MC for the bias study? Yes! Background under control

Mass spectra

Selected events $m_{_{\gamma\gamma}}$ spectra in the two categories

Mass spectra

Selected events $m_{\gamma\gamma}$ spectra in the two categories Signal m=650GeV, k=0.01

Interpretation: exclusion limits

Expected and observed limits on Graviton cross section x diphoton BR:

- ✓ $m_G < 1.3/3.8$ TeV excluded (k = 0.01/0.2)
- ✓ Excluded range in agreement with expectations
- ✓ Observed limit deviation from expected due to excess in data

Interpretation: pValue

✓ Largest excess for m_{g} =760GeV in the narrow width hypothesis

- ✓ Local significance 2.6σ
 - \checkmark significance reduced to 1.2 σ when accounting for Look Elsewhere Effect in m_G
 - ✓ LEE in k further decreases significance

Analysis categories

Overall efficiency x acceptance ~55% for RSG at 600GeV

Fraction of EBEE events: 10 to 45%

10-15% improvement from adding the barrel-endcap category Excess at 760GeV mostly in barrel

Spin hypothesis

Spin2 vs spin0: different acceptance and categories weight but **analysis not much sensitive to these differences**

8TeV analysis: limit shape is quite similar

Comparison to 8TeV search

Combination with 8TeV results in narrow width hypothesis

- ✓ different acceptance and categorizations
- ✓ most sensitive 8TeV analysis in each mass range considered

Likelihood of fits to S+B hypothesis vs 13TeV equivalent cross-section:

- ✓ 8TeV limits scaled by xsec ratio
- ✓ S=RS Graviton, m_G=750GeV, k=0.01
 - ✓ production: 90% gg, 10% qqbar
 - ✓ xsec(8TeV)/xsec(13TeV)=1/4.2=0.24

Compatible equivalent cross-sections within uncertainties 13TeV result not in contradiction with 8TeV

8-13 TeV combination

m_G<~1.5TeV: combined limits 20-30% better than single inputs

Largest excess for m_g=750GeV

- ✓ local significance ~3σ
- ✓ reduced to <1.7 σ accounting for LEE

Outlook

- ✓ Observed diphoton mass spectrum in agreement with Standard Model expectations
- ✓ Strongest constraint on production cross-section set
- ✓ Modest excess for mass ~760GeV assuming narrow width signal
 - ✓ local significance of 2.6σ
 - ✓ global significance of <1.2 σ
 - ✓ still consistent with 8TeV search

More data needed to determine the origin of the excess: statistical fluctuation or manifestation of new physics

LHC will start taking data again in a few months

✓ ~10-15/fb needed to confirm the excess

CMS Experiment at the LHC, CERN Data recorded: 2015-Nov-02 21:34:00.662277 GMT Run / Event / LS: 260627 / 854678036 / 477

Μγγ = 745 GeV

Backup

Photon selection efficiencies

Photon energy scale and resolution

Energy scale and resolution corrections estimated using 13TeV Z->ee events

- ✓ in different photon categories
- ✓ maximum likelihood analysis performed while modifying energy

Extrapolation to high mass checked with high mass DY events

✓ compatible with a precision of 0.5% for m_{ee} >200 GeV

Photon energy smeared on MC to match data

✓ additional smearings

still room for improvement

34

Vertex determination

Background composition

Background estimate fully data driven => no simulation used BUT good control of background gives confidence in the analysis

Background composition measured in data using template fits

Dominant contribution: events with 2 prompt photons Events where 1 or 2 candidates from jet fragmentation <10% (20%) in EBEB (EBEE) 36

Background composition, closure test

Data driven prediction for the prompt-prompt component compared with theory $\checkmark~$ Sherpa generator rescaled to 2yNNLO

Good agreement observed

Systematics

Signal model:

- ✓ Luminosity: 4.6% on signal normalization
- ✓ Trigger and photon selection: 10% on signal normalization
- ✓ Photon energy scale: 1%
- ✓ PDF: 6% on signal normalization

Background model:

- ✓ Bias term only
- ✓ [Parameter coefficients: unconstrained nuisance parameters
 - ✓ contribute to statistical error]

Signal model

$m_{\rm G}~({\rm GeV})$	category	$\widetilde{\mathcal{K}}$	FWHM (GeV)	$\widetilde{\mathcal{K}}$	FWHM (GeV)
500	EBEB	0.01	14	0.2	36
500	EBEE	0.01	22	0.2	42
1000	EBEB	0.01	27	0.2	74
1000	EBEE	0.01	43	0.2	85
2000	EBEB	0.01	54	0.2	147
2000	EBEE	0.01	76	0.2	163
3000	EBEB	0.01	96	0.2	225
3000	EBEE	0.01	110	0.2	254
4000	EBEB	0.01	121	0.2	320
4000	EBEE	0.01	150	0.2	326

Analysis categories

8TeV analyses

8TeV vs 13TeV

CMS vs ATLAS

	cms	atlas	
luminosity	2.6/fb	3.2/fb	
benchmark	spin2	spin0	
eff x acc 600GeV	~0.55	~0.4	
background model	m^(a + b*log(m))	(1-x^1/3)^b x^a	
fit bias	<1/2 stat.uncertainty	< 1/5 stat.uncertainty	
Preferred width	narrow	~6%	
ATLAS Preliminary	CMS Preliminary Data Background-only fit $s = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ fit	2.6 fb ⁻¹ (13 TeV) EBEB category	

43

Physics objects @ 13 TeV

Excellent comprehension of electrons, photons, muons, jets, MET @ 13 TeV

Electrons from Z decays

• HCAL / ECAL energy

Photons from radiative Z decays

• Relative e.m. isolation

