SEARCHES FOR NEW HEAVY RESONANCES AT THE LHC

Daniele del Re

Sapienza Università & INFN Sezione Roma

WHY HIGH MASS RESONANCES

- Resonances represent the simplest way to discover new particles
 - striking and incontrovertible signature
- A statistically significant peak over a smooth background
 - -experimentally robust
 - small systematics
 - difficult for unknown backgrounds to mimic
- The most important search when new energies are explored

 the goal of LHC
 particularly relevant at start-up (Run2)

RESONANCES IN PAST DISCOVERIES

Search for High Mass Resonances at the LHC

PROS IN HIGH MASS SEARCHES

- Searches with small systematics

 compared to searches based on tails (Missing ET)
- Model-independent probe to new physics
- Predicted in many beyond SM scenarios

FROM THEORY TO SIGNATURES

FROM THEORY TO SIGNATURES

FROM THEORY TO SIGNATURES

FROM SIGNATURES TO THEORY

FROM SIGNATURES TO THEORY

FROM SIGNATURES TO THEORY

Biased list!

– corresponds to signatures with largest discovery potential at the start of Run2

- 1. Pick your favorite di-object final state
 - crucial expertise in reconstruction and detector
- 2. Be as model-independent as possible
 - do not design selection based on a particular model
 - -be loose in kinematics
- **3. Reconstruct invariant mass**

at high energies

$$M = \sqrt{2E_1E_2(1-\cos\theta)}$$

- 1. Pick your favorite di-object final state
 - crucial expertise in reconstruction and detector
- 2. Be as model-independent as possible
 - do not design selection based on a particular model
 - -be loose in kinematics
- **3. Reconstruct invariant mass**
- 4. Simple signal extraction
 - cut and count techniques
 - likelihood fit based on a smooth
 background + gaussian-like signal

- 1. Pick your favorite di-object final state
 - crucial expertise in reconstruction and detector
- 2. Be as model-independent as possible
 - do not design selection based on a particular model
 - -be loose in kinematics

3. Reconstruct invariant mass

4. Simple signal extraction

- cut and count techniques
- likelihood fit based on a smooth
 background + gaussian-like signal

5. Model-independent limits

– e.g. report excesses/limits in σ x BR x A

- 1. Pick your favorite di-object final state
 - crucial expertise in reconstruction and detector
- 2. Be as model-independent as possible
 - do not design selection based on a particular model
 - -be loose in kinematics

3. Reconstruct invariant mass

- 4. Simple signal extraction
 - cut and count techniques
 - likelihood fit based on a smooth
 background + gaussian-like signal

5. Model-independent limits

– e.g. report excesses/limits in σ x BR x A

6. Put constraints in several BSM scenarios

LHC

pp collisions at 7TeV and 8TeV

CMS Integrated Luminosity, pp

- ~23 fb⁻¹ @ 8TeV recorded (+~6fb⁻¹@ 7TeV)
 results shown with ~20 fb⁻¹ at 8 TeV
- ~ <20 collisions> per crossing

ATLAS AND CMS

OBJECTS IN HIGH MASS SEARCHES

	pros	cons	resolution	calibration
jets	large cross sections involved	resolution not great. calibration not trivial	5-10%	gamma+jet, multijet, extrapolations
electrons	relatively clean	high pt electrons not fully contained	1-2% at high masses	Z->ee and extrapolations
muons	very clean	need precise tracker alignment	3-10% at high masses	Z->mumu and extrapolations
photons	relatively clean	no control samples for scale determination	1-2% at high masses	Z->ee and extrapolations
missing ET	tagging for W'	hard to calibrate, tails due to detector noise	-	gamma,Z + jets

OBJECTS IN HIGH MASS SEARCHES

	l will	e on these	ones on		
jets	large cross sections involved	resolution not great. calibration not trivial	5-10%	gamma+jet, multijet, extrapolations	
electrons	relatively clean	high pt electrons not fully contained	1-2% at high masses	Z->ee and extrapolations	
muons	very clean	need precise tracker alignment	3-10% at high masses	Z->mumu and extrapolations	
photons	relatively clean	no control samples for scale determination	1-2% at high masses	Z->ee and extrapolations	
missing ET	tagging for W'	hard to calibrate, tails due to detector noise	-	gamma,Z + jets	

PERFORMANCE OF RECONSTRUCTION

Search for High Mass Resonances at the LHC

PERFORMANCE OF RECONSTRUCTION

PERFORMANCE OF RECONSTRUCTION

HIGH MASS: A LIFE W/OUT CONTROL SAMPLES

- efficiency of energetic objects is not zero
- resolution under control
- In extreme cases resonance can be hidden!

EXPERIMENTAL ISSUES: RESOLUTION

Mass resolution crucial in resonance searches

- 1. statistical power inversely proportional to the mass resolution
- 2. resonance hidden by bad understanding of resolution
- Need ad-hoc studies and calibration strategies at such large momenta

EXPERIMENTAL ISSUES: BACKGROUND

Accurate background estimate to not bias signal extraction

- signal can be overestimate (or even fake excess)
- signal can be missed

Two techniques

- background shape from MC and normalize in control region (usually low mass) + theory/experimental systematics
- parameterize background shape and fit parameters directly on data

Search for High Mass Resonances at the LHC

EXPERIMENTAL ISSUES: BACKGROUND

Accurate background estimate to not bias signal extraction

- signal can be overestimate (or even fake excess)
- signal can be missed

Two techniques

- background shape from MC and normalize in control region (usually low mass) + theory/experimental systematics
- parameterize background shape and fit parameters directly on data

Search for High Mass Resonances at the LHC

DIJET: INTRODUCTION

- Straightforward search, two high pT jet
- Different search strategies:
 - narrow resonances
 - resonances in b jets
 - -wide resonances

- Gluon radiation recovered in wide jets (ΔR=1.1)
- Several interpretations. Among them:
 - -excited quarks (q*) including excited b quarks (b*)
 - the color-octet scalar (S8) resonances
 - new gauge bosons (W' and Z') with SM-like couplings (SSM);
 - Randall-Sundrum (RS) gravitons (G)
 - QBHs

DIJET: SELECTION (CMS)

- Trigger requirements:
 - -L1: HT > 150GeV,
 - -HLT: HT>650GeV or m_{jj}>750GeV with |Deta|<1.5
- Kinematics: pT(jet) > 30GeV, |eta| < 2.5, m_{jj} > 890GeV
- btagging: combined secondary vertex (CSV)
 - to increase sensitivity in resonances decaying in bjets (Z', RS graviton, b*)

DIJET: SPECTRUM AND MODELING (CMS)

Background fitted with

$$\frac{d\sigma}{dm_{jj}} = \frac{P_0(1-x)^{P_1}}{x^{P_2+P_3\ln(x)}}$$

$$x = m_{
m jj}/\sqrt{s}$$

- Signal shape for:
 - -RS gravitons (gg and qq)
 - -excited quarks for (gq)
 - for b* enriched b categories used
- Wide resonances RS gravitons
 - k/M_{Pl} parameter varied, up to 30%
- QBH modeled with different masses
 - shapes independent on MD and n
- Signal extracted using a binned likelihood approach

DIJET: B-TAGGING CATEGORIES

no excess

DIJET: LIMITS (I)

- Limits for wide resonances
- Similar results for ATLAS and CMS

DIJET: INTERPRETATION

	Inclusive search		
Model	Final state	Observed mass	Expected mass
		exclusion (TeV)	exclusion (TeV)
String resonance (S)	qg	[1.2, 5.0]	[1.2, 4.9]
Excited quark (q^*)	qg	[1.2, 3.5]	[1.2,3.7]
E_6 diquark (D)	qq	[1.2, 4.7]	[1.2, 4.4]
W' boson (W')	$q\overline{q}$	[1.2,1.9] + [2.0,2.2]	[1.2,2.2]
Z' boson (Z')	$q\overline{q}$	[1.2, 1.7]	[1.2, 1.8]
RS graviton (G), $k/\overline{M}_{Pl} = 0.1$	$q\overline{q}+gg$	[1.2, 1.6]	[1.2, 1.3]
	b-enriched search		
Excited b quark (b^*)	bg	[1.2, 1.6]	
	Wide resonance sear	ch	
Axigluon (A)/coloron (C)	$q\overline{q}$	[1.3, 3.6]	
Color-octet scalar (S8)	<i>gg</i>	[1.3, 2.5]	

Model and Final State	95% CL	Limits [TeV]
	Expected	l Observed
$q^* ightarrow qg$	3.99	4.09
$s8 \rightarrow gg$	2.83	2.72
$W' ightarrow q \bar{q}'$	2.51	2.45
Leptophobic $W^* \to q\bar{q}'$	1.93	1.75
Leptophilic $W^* \to q\bar{q}'$	1.67	1.66
QBH black holes	5.82	5.82
(q and g decays only)		
BLACKMAX black holes	5.75	5.75
(all decays)		

CMS

ATI	LAS

DILEPTON: INTRO

Both di-electron and di-muon channels

- loose selection search for a narrow resonance
- main background Drell-Yan events
- -virtually background free above 1.5 TeV

• Kinematic selection:

- trigger: single and double lepton triggers
- offline: pt(leptons)>25-40 GeV + isolation
- -A x efficiency not very different between spin 1 and 2 resonances
- Efficiency: Z-based tag and probe for linearity check
- Interpretations for resonance:
 - $-Z'_{SSM}, Z'_{\Psi}$
 - -Kaluza-Klein graviton (G_{kk})

DILEPTON: SPECTRUM

Search for High Mass Resonances at the LHC

DILEPTON: LIMIT EXTRACTION

• CMS: to reduce systematics due to efficiency, extracted via :

$$R_{\sigma} = \frac{\sigma(pp \to Z' + X \to \ell\ell + X)}{\sigma(pp \to Z + X \to \ell\ell + X)}$$

-Z' events counted in mass ± 5%, Z in mass ± 30GeV

- -mass window form Z' to reduce interference and PDF effects
- ATLAS: MC shapes with a likelihood fit assuming no interference
- **DY background from MC** (shape is parametrized for CMS)
- Fake leptons from data-driven approaches
- **Systematics** (similar between experiments):
 - -efficiency (PDF-detector) 3-6% in acceptance
 - -alignment in muons 5% (resonant) up to 41% for non-resonant
 - PDF in background 5-10% dependent on mass

DILEPTON: INTERPRETATION

- Very similar limits set by the two experiments
- Z' excluded below 2.5 3 TeV

DIPHOTON: INTRO

- Approach very similar to the dielectron analysis
- Diphoton triggers, pT > 20 GeV
- Selection based on simple kinematics and isolation criteria
- Main background: SM diphoton production
 - -shape taken from MC
 - normalization from low mass region

Fake photon contribution from control samples

-less than 10% of total background

DIPHOTON: SELECTION AND SPECTRA

- Results only with partial statistics (2 5 fb⁻¹)
 maybe update soon with full statistics
- No excess
- Limits on RS Graviton set in the range ~1 2 TeV depending on k/M_{Pl}

Search for High Mass Resonances at the LHC

DIPHOTON: INTERMEDIATE MASSES

- New interest in scrutinize the intermediate mass range (<1TeV), done in both experiments
 – in principle RS gravitons already excluded in such region
- Simple by-product of Higgs to diphoton analysis, extending search to larger masses and studying different widths
- Mass limits for a possible Higgs-like scalar

Search for High Mass Resonances at the LHC

PHOTON+JET

- **≥1 photon + ≥1 jet (**p⊤ >170 GeV)
- Further requirements on topology
 - $-\Delta R(\mathbf{\gamma}, jet) > 0.5$
 - $-\Delta\eta(\mathbf{\gamma}, \text{jet}) < 2.0, \Delta\phi(\mathbf{\gamma}, \text{jet}) > 1.5$
- Interpreted in excited quarks scenario

DIBOSON: INTRO

- Searching from new resonances decaying in two massive bosons
- Analysis strategy determined by
 - -boson decay modes
 - -mass of the resonance and boost

Clean experimental signature

- In case of discovery, possible to measure properties from angular distributions of the decay products
- Several different combinations studied
- Only few examples given in the talk

DIBOSON: LEPTONIC CHANNELS

Fully leptonic final state

Small background from MC non resonant WZ

Low BR but very clean

Analysis Strategy

- search for bump in M_{wz} spectrum
- neutrino p_z from W mass constraint
- -acceptable resolution
 - (~10% at 1 TeV)

DIBOSON: HADRONIC CHANNELS

DIBOSON: BOOSTED HADRONIC V DECAYS

Opening angle between jets

$$\Delta R_{qq}^{\min} \approx \Delta \theta_{qq}^{\min} \approx 2 \frac{M_V}{p_{T,V}}$$

Low pT: separated

• High p_T: merging Example $M_{reso} = 2 \text{ TeV}$ $p_T(V) \sim 1 \text{ TeV} \implies \Delta R_{qq}^{min} \approx 0.2$ $M_V \sim 100 \text{ GeV}$ • High p_T: merging

HOW TO TAG BOOSTED V DECAYS

Several algorithms:

- Jet trimming, pruning, filtering, ...
- Remove soft component of jet, reducing effects of pileup and UE
- Substructure variables

Jet mass

- Built from subjets after jet declustering

Momentum Balance

Search for High Mass Resonances at the LHC

DIBOSON: SPECTRUM AND FIT

- Background from 1) jet mass sideband in data 2) fit to data with smoothly falling function (a-la dijet analysis)
- m_{vv} resolution ~3-6%

Search for High Mass Resonances at the LHC

DIBOSON: INTERPRETATION

IN SUMMARY: DID WE SEE ANYTHING?

• The answer is NO

- But excesses (not very significant) here and there deserving another look with more data
- Example: some activity at 1.8 TeV seen by CMS

- different excesses seen in other analyses not covered in this talk

NON-RESONANT SEARCHES

- Not discussed in this talk but almost every bump hunting converted in the search for broad excess
 - interpreted in several scenarios, Contact Interactions, ADD, etc...
 - more difficult than resonance search (just cut-and-count and conservative systematics)

– no excess

EXPAND THE SEARCHES

EXPAND THE SEARCHES

INCREASE CENTER OF MASS ENERGY

LHC PLANS

- First collisions: middle of May (no scrubbing)
- Collisions for Physics: June/July
- ~1 fb⁻¹ with 50ns bunch spacing (first three weeks)
- ~10 fb⁻¹ with 25ns bunch spacing (by the end of the year)

PARTON LUMINOSITY RATIO

For high mass searches parton luminosity counts!
 – Huge ratio in the interesting (not yet excluded) region

Search for High Mass Resonances at the LHC

PHYSICS POTENTIAL VS LUMINOSITY

- Sensitive to masses above 3 TeV with just 1 fb⁻¹
- We can redo all past searches with 5 fb⁻¹ (i.e. results for Moriond 2016)

Search for High Mass Resonances at the LHC

HOW MUCH LUMINOSITY?

WHAT TO EXPECT IN '15-'16: SUMMARY

- After 1 fb⁻¹ at 50 ns bunch spacing (three weeks after startup)
 - first dijet results
 - all bump huntings look for "unexpected signals"
- After 3 fb⁻¹ at 25 ns bunch spacing (September 2015?)
 - almost all high mass resonance searches start to be sensitive and can produce a public result
 - check 8 TeV excesses
 - -look for more "unexpected signals"
- After 10 fb⁻¹, i.e. end of the year but presented in Moriond 2015
 - in principle all analyses can be repeated
- End of 2015: almost all high mass searches public
- End of 2016 (>30 fb⁻¹): full CMS physics program
 - -with several additions and new ideas

EVEN LONGER TIMESCALES: RUN3, RUN4

- After end of Run2 statistics won't help much in extending physics potential
 - -fast drop of parton luminosities kills the high mass searches
- Maybe with 14 TeV energy another small addition in reach
- HL-LHC not very interesting for high mass searches
- Maybe invest more on intermediate mass region (<1-2 TeV)

EXPAND THE SEARCHES

Some New Ideas

EXPAND THE SEARCHES: LOWER MASSES?

- Resonance searches often done at large masses
 - -example: dijet (1 TeV)
- Region below still interesting
- In case limit due to trigger, need to implement alternative ways of storing data

EXPAND THE SEARCHES: LONG-LIVED

- Many LHC searches for exotics signature search for longlived displaced searches
 - below case for displaced dijet analysis
- Maybe possible to expand the resonance search by including displacement tagging

-feasible only at lower mass regime

MORE SUB-STRUCTURES

- Substructures now successfully used to identify W, Z, top, and Higgs
- Could be good to explore use of substructures when the particle is not SM
 - handle to reduce backgrounds and increase physics potential, mainly at lower masses

CONCLUSIONS

- Find high mass resonances is the best/easiest way to discover new physics
- Comprehensive program for high mass resonance searches at LHC
- Unfortunately no sign of new physics yet
- Run2 @ 13TeV (~10fb⁻¹ by end of the year)
 - increase in energy dramatically expand reach in mass
 - -2015 is the year of the high mass resonance searches!
- Expect big news at Moriond 2016
 - -hopefully good news. Maybe even earlier

ATLAS Exotics Searches* - 95% CL Exclusion

Status: ICHEP 201

Extra dimensions

Gauge bosons

3

DM

2

arks

ž

Ú.

Other

itus: ICHEP 2014						$\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1}$	√s = 7, 8 TeV
Model	ℓ, γ	Jets	E ^{miss} T	∫£ dt[fb	⁻¹] Mass limit	-	Reference
ADD $G_{KK} + g/g$	_	1-2 j	Yes	4.7	Mo 4.37 TeV	n = 2	1210.4491
ADD non-resonant (/	2e.µ	-	_	20.3	Ms 5.2 TeV	n = 3 HLZ	ATLAS-CONF-2014-030
ADD QBH $\rightarrow (q$	1 e.u	11	-	20.3	Ma 5.2 TeV	n = 6	1311,2006
ADD OBH	-	21	_	20.3	Ma 5.82 TeV	n = 6	to be submitted to PRD
ADD BH high N _{1.6}	2 µ (SS)	_	_	20.3	Ma 5.7 TeV	n = 6, Mn = 1.5 TeV, non-rot BH	1308.4075
ADD BH high 5 pT	≥ 1 e.µ	≥21	-	20.3	Ma 6.2 TeV	n = 6, Mn = 1.5 TeV, non-rot BH	1405.4254
$RS1 G_{KK} \rightarrow \ell\ell$	2 c. u		-	20.3	Gxx mass 2.68 TeV	$k/\overline{M}_{in} = 0.1$	1405.4123
RS1 $G_{KK} \rightarrow WW \rightarrow \ell \nu \ell \nu$	2 c. u	-	Yes	4.7	G _{xx} mass 1.23 TeV	$k/\overline{M}_{\rm ex} = 0.1$	1208.2880
Bulk RS $G_{WW} \rightarrow ZZ \rightarrow \ell\ell a a$	2 e.u	21/1J	=	20.3	Gry mass 730 GeV	$k/\overline{M}_{cr} = 1.0$	ATLAS-CONF-2014-039
Bulk BS Gur at HH at hhhh	_	4 b	-	19.5	Gra mass 590-710 GeV	$k/M_{\rm m} = 1.0$	ATLAS.CONE-2014-005
Bulk BS $\sigma_{VV} \rightarrow t\bar{t}$	1 c.u	> 1 b. > 1J/	2i Yes	14.3	Box mass 2.0 TeV	BR = 0.925	ATLAS-CONE-2013-052
S ¹ /Z FD	20.0		-, 100	5.0	Max = 8 ⁻¹ 4.71 TeV		1209 2535
UED	2 7	-	Yes	4.8	Compact. scale R ⁻¹ 1.41 TeV		ATLAS-CONF-2012-072
$SSM Z' \rightarrow \ell\ell$	2 e.µ	-	-	20.3	Z' mass 2.9 TeV		1405.4123
SSM $Z' \rightarrow \tau\tau$	2 r	-	-	19.5	Z' mass 1.9 TeV		ATLAS-CONF-2013-066
SSM $W' \rightarrow \ell x$	1 e.µ	-	Yes	20.3	W' mass 3.28 TeV		ATLAS-CONF-2014-017
EGM $W' \rightarrow WZ \rightarrow \ell_Y \ell' \ell'$	3 e. µ	-	Yes	20.3	W' mass 1.52 TeV		1406.4456
EGM $W' \rightarrow WZ \rightarrow ggll$	2 c. µ	2j/1J	_	20.3	W' mass 1.59 TeV		ATLAS-CONF-2014-039
LBSM $W'_{c} \rightarrow t\bar{b}$	1 c. u	2 b. 0-1 j	Yes	14.3	W' mass 1.84 TeV		ATLAS-CONF-2013-050
LRSM $W'_R \rightarrow t\overline{b}$	0 e, µ	\geq 1 b, 1 J	-	20.3	W' mass 1.77 TeV		to be submitted to EPJC
CI qqqq	-	2 j	-	4.8	۸ 7.6 TeV	$\eta = +1$	1210.1718
Clgqll	2 c. µ	-	-	20.3	٨	21.6 TeV $\eta_{LL} = -1$	ATLAS-CONF-2014-030
CI watt	2 e, µ (SS)	≥ 1 b, ≥ 1 j	i Yes	14.3	۸ 3.3 TeV	C = 1	ATLAS-CONF-2013-051
EFT D5 operator (Dirac)	0 e.u	1-2 i	Yes	10.5	M. 731 GeV	at 90% CL for m(x) < 80 GeV	ATLAS-CONE-2012-147
EFT D9 operator (Dirac)	0 0.4	1.1.<11	Ves	20.3	M. 24 TeV	at 90% CL for m(x) < 100 GeV	1309.4017
	+ + , p		100	20.0			10000-0017
Scalar LQ 1" gen	2 c	≥2j	-	1.0	LQ mass 660 GeV	$\beta = 1$	1112.4828
Scalar LQ 2 nd gen	2μ	≥21	-	1.0	LQ mass 685 GeV	$\beta = 1$	1203.3172
Scalar LQ 3" gen	1 e, µ, 1 τ	1 b, 1 j	-	4.7	LQ mass 534 GeV	$\beta = 1$	1303.0526
Vector-like quark $TT \rightarrow Ht + X$	1 c, µ	\geq 2 b, \geq 4 j	j Yes	14.3	T mass 790 GeV	T in (T.B) doublet	ATLAS-CONF-2013-018
Vector-like quark $TT \rightarrow Wb + X$	1 <i>e</i> ,µ	$\geq 10, \geq 31$	I Yes	14.3	T mass 670 GeV	isospin singlet	ATLAS-CONF-2013-060
Vector-like quark $TT \rightarrow Zt + X$	2/≥3 e,µ	≥2/≥1 b	-	20.3	T mass 735 GeV	T in (T,B) doublet	ATLAS-CONF-2014-036
Vector-like quark $BB \rightarrow Zb + X$	2/≥3 e.µ	≥2/≥1 b	-	20.3	B mass 755 GeV	B in (B,Y) doublet	ATLAS-CONF-2014-036
Vector-like quark $BB \rightarrow Wt + X$	2 c. μ (SS)	≥ 1 b, ≥ 1 j	j Yes	14.3	B mass 720 GeV	B in (T,B) doublet	ATLAS-CONF-2013-051
Excited quark $q^* \rightarrow q\gamma$	1γ	1 j	-	20.3	q' mass 3.5 TeV	only u^* and d^* , $\Lambda = m(q^*)$	1309.3230
Excited quark $q^* \rightarrow qg$	-	2 j	-	20.3	q" mass 4.09 TeV	only u* and d*, A = m(q*)	to be submitted to PRD
Excited quark $b^* \rightarrow Wt$	1 or 2 e. µ	1 b, 2 j or 1	j Yes	4.7	b' mass 870 GeV	left-handed coupling	1301.1583
Excited lepton $\ell^* \rightarrow \ell \gamma$	2 e, μ, 1 γ	-	-	13.0	C mass 2.2 TeV	$\Lambda = 2.2 \text{ TeV}$	1308.1364
LSTC $a_T \rightarrow W\gamma$	1 e.μ. 1 γ	-	Yes	20.3	at mass 960 GeV		to be submitted to PLB
LRSM Majorana v	2 e. µ	2 j	-	2.1	Nº mass 1.5 TeV	$m(W_R) = 2$ TeV, no mixing	1203.5420
Type III Seesaw	2 e, µ	-	-	5.8	N* mass 245 GeV	V _c =0.055, V _j =0.063, V _c =0	ATLAS-CONF-2013-019
Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$	2 e, µ (SS)	-	-	4.7	H** mass 409 GeV	DY production, BR($H^{\pm\pm} \rightarrow \ell \ell$)=1	1210.5070
Multi-charged particles	-	-	-	4.4	multi-charged particle mass 490 GeV	DY production, g = 4e	1301.5272
Magnetic monopoles	-	-	-	2.0	monopole mass 862 GeV	DY production, $ g = 1g_D$	1207.6411
	√s -	7 TeV	√s -	8 TeV		40	
	13-				10-* 1	¹⁰ Mass scale [TeV]	

ATLAS Preliminary

*Only a selection of the available mass limits on new states or phenomena is shown.

DILEPTON: SELECTION (CMS)

• Trigger:

- muons: single pT > 40GeV, eta<2.1</p>
- electrons: dilepton pT>33GeV with some loose iso criteria (HCAL)
- -efficiency between 97 and 100%

• Electrons:

- clusters are matched with pixels and then tracking is performed
- tracking and calo isolation (DR<0.3) and cluster shape

• Muons:

- pt>45GeV and deltapt/pt<0.3, eta<2.1, transverse impact parameter<0.2cm
- Efficiency: Z-based tag and probe for linearity check
- Acceptance * Eff not very different between spin 1 and 2 (tab)