
Diana User and Developer Tutorial

M. Pallavicini - M. Vignati

January 22, 2007

1 Document History

Added Implementing a Module and Events structure 22-1-2007 First preliminary and incomplete version
5-1-2007

2 Document Content

This document is a brief tutorial to the use of Diana, the reconstruction and analysis software of the Cuore
experiment. The document is structured as follows: section 3 lists the system and environment settings that
are required to compile and run Diana; section 4 says how to get the code from SVN repository and compile
it; section 5 tells how to run Diana; section 6 is a brief and general description of the internal structure
of the Diana framework and of the main software components of this framework; section 7 lists the coding
convention used throughtout the code; section 8 gives some hints and examples on how to write a new Diana
module; section 9 describes the structure of the internal diana event; section 10 gives a detailed description
of the root event; finally, section ?? describes the policies that Diana developers and users should comply
with.

3 System and environment requirements for running Diana

The code is written in C++ and is developed and debugged in Linux platforms. The most used distributions
in the Cuore developers community are Debian and RedHat, but several other platforms have been used with
no major problems. The code has been successfully compiled and run under MAC Darwin UNIX; although
we are willing to do some effort to maintain the Makefiles also for Darwin, there is no official support on
MAC. The kernel version should not matter, provided that it is not too old and that the g++ version is new
enough (see below). Usually we work with kernel 2.4 or newer.

The code is maintained in a Subversion (SVN) server (http://svnbook.org) installed in Milano. A WEB
server is available to browse the source code (http://crio.mib.infn.it/wsvn/). The code is also documented
by means of doxygen tool (http://www.stack.nl/ dimitri/doxygen). If you do not have doxygen installed,
you can anyway compile and run the code but you will not be able to produce the HTML documentation of
the code. See section 4 for details about using SVN.

All scripts are written using standard shell sh or perl. Developers are strongly encouraged to avoid using
other scripting languages, unless there are good reasons to do so.

The currently used C++ compiler is g++ version 3.2. Versions 4.x are not supported yet. The code
might not compile with older versions. Type g++ –version to discover which is the version installed in
your system. Ask your system administrator to upgrade it, if it is too old.

The GNU Scientific Library (GSL, http://www.gnu.org/software/gsl) is used. Current version is 1.8.
Older versions might not work. The script gsl-config must be in the PATH variable and work properly.

The root package (http://root.cern.ch) is used. Current version is 5.12 or above. The ROOTSYS envi-
ronment variable must be properly set, and the PATH variable should include $ROOTSYS/bin/. Contact
your system administrator for details.

1

The SQL data base server is postgreSQL. It is free and normally distributed in all Linux platforms. To
compile and run you do not need a server up and running, but just the C++ libraries. Current version is
7.3. See http://www.postgreSQL.org for details about postgreSQL.

4 Getting and Compiling Diana

The simplest way to get diana is to download the code from SVN server. Just type:

svn co http://crio.mib.infn.it/svn/cuore/

and you will get a new cuore directory with all code in it. In this way you get the whole Cuore software
repository which currently includes Diana and Apollo (the data acquisition and online monitor software).
If you are not interested to online (Apollo is NOT documented here) enter directory cuore and type:

make diana

If everything runs smoothly, you’ll get a binary file bin/diana. To run diana just type:

./bin/diana [options]

Next section will give you the details on how to customize Diana behaviour to your needs.

5 Running Diana

As described in next section (6) Diana is based on a flexible framework that is basically only capable of
running a list of sequences, each of them being a coherent list of modules.

The exact meaning of module and sequence is described in section 6. Here is important just to say that
a sequence is a list of modules that contain at least a reader and a writer (plus any number of additional
modules) and are run on all events in a given file (or other data source) and a module is a piece of code that
acts on a single event and compute come quantity (i.e. a module could take a Cuore pulse and compute its
FFT and store the result into the event). We recall here that an event is the smaller data unit provided by
data acquisition, typically a triggering pulse, a record of event infos and an optional list of nearest neighbor
pulses.

How does Diana know which module should be run ? From a configuration file that by default is called
cfg/diana.cfg. This file, through a simple syntax, tell Diana which modules should be run, which modules
should be grouped in sequences and which input parameters are to be given to each module. See 6.3 to have
more details about the configuration file.

Besides the configuration file Diana accepts a few inline options:

-h Type help

-C file set diana config file name [default cfg/diana.cfg]

-g run diana with GUI for configuring parameters (not implemented yet)

-G n n=1 starts event display; n=2 starts event filter; n=3 starts sequence filter; these are interactive
graphic mode of diana (not implemented yet)

-f file set input file name or id depending on reader in use

-F file set input file list

-e n maximum number of events to be processed

-s n number of events to be skipped

2

Figure 1: Basic strucuture of Diana framework

6 Brief description of Diana framework

6.1 Framework, Modules and Sequences

The structure of Diana is depicted in Figure 1. The class QFrameWork is the main engine of the system.
It gets a list of QSequences from the QModuleFactory. Each QSequence is a consistent list of QModule
(actually classes that inherit from QModule). Each QSequence has a unique reader, a unique writer and the
list of modules.

Besides some interaction with the Graphic User Interfaces (which is not described here because it is
still very preliminary and not implemented yet), the QFrameWork::Run() method has only the function of
executing the QSequence::Run() method for each defined QSequence. The QSequence has the capability to
decide whether it should be re-run or not in order to allow iterative algorythms.

In the QSequence::Run() method, at the beginning the virtual member function Init() is called for the
reader, the modules and the writer.

In the Init() function each module is supposed to get the parameters (see 6.3 for details) thorugh standard
methods provided by the base class QModule, and to perform all initializations. For example, a reader will
probably open the file or open a network connection or any other activity needed to prepare the data source
to provide events; the modules will do any initialization activity like creating histograms; the writer will
create the output files and so on. The only important thing to be known is that Init() is called before
beginning the loop over the events.

After Init(), the QSequence enter the main loop, in which an empty QEvent (created by the QSequence
itself) is filled by the reader method Do(QEvent*). Then the event is passed to all modules through their
specific Do(QEvent*). While passing from one module to the following one ,the events get richer and richer
in informations, until it reaches the writer that will write it on disk.

After the end of the main event loop, the method Done() is called for reader, modules and writer.
In case more than one sequence is defined, the framework automatically guarantees that the output of

the first sequence is given as input to the second, and so on. Therefore, the input file (or input data source)
is meaningful for the first sequence only.

6.2 Data base interface

To be done.

6.3 Configuration file and parameters

In order to run Diana , a configuration file is mandatory. Unless otherwise specifified with option -C,
Diana will look for file cfg/diana.cfg The syntax for this file is very simple. The file can define any number
of sequences, each of them containing any number of modules. Each module can have any number of input
parameters.

A sequence is defined by the two keywords sequence seqname and endseq, being seqname an arbitrary
string (no spaces, no special characters!) that will define the name of the sequence.

Within a sequence, a reader and a writer ar mandatory; they are defined by the keywords reader
readername and endmod and writer writername and endmod; furthermode any list of additional modules
can be defined using the keywords module modname and endmod. A module can be included in the same
sequence more than once, and can be present in more than one sequence. Remember that in this case ALL
parameters should be written in all module sections, because for the framework parameter A in module B
of sequence C, is DIFFERENT from parameter A of module B in sequence D, or of another occurrence of
module B in the same sequence C. The parameters ”enable” and ”verbosity” are mandatory for all modules.
”enable” just tell if the module should be run or not. The verbosity set the minimum level of messages will
be print on screen and into log file.

3

Within a module you can add any number of parameters with the simple syntax parname = parvalue.
parname can be any string with no spaces. parvalue can be a string, an integer number, a double (float) value
and boolean. The type will be automatically defined by the parser: it first checks whether the parameter
is a boolean (true or false), then if it is an integer, than a double and otheriwise will treat it as a string.
Be careful that this means that if you right 3. the parameter will be understood as double, while 3 will be
understood as integer. Other parameter types might be added in the future if needed (for example a type
vector, meaning a list of numbers). Right now only bool, int, double and string are implemented.

7 Coding standards and code structure

Both Apollo and Diana are written following a set of coding standards that should be followed strictly1

throughout the code.

1. Each class name should have the general form QClassName, without and using capital letters where
appropriate. The only exceptions are classes that inherit from class QModule (i.e. the modules) which
should have an M instead of Q.

2. Class headers are in a separate file called QClassName.hh and class implementation should be in file
QClassName.cc. Each file contains code for one class only.

3. Class variables should always be private. Class variables should begin with letter f and using capital
letters where appropriate. Example: fFileName. static member variables should begin with g instead
of f

4. Each class header should include as first cuore header file QCuore.hh.

5. The code should be well documented using doxygen keywords. Take as an example class QVector in
pkg/mathtools/ to learn how2.

6. Each Diana module is generally kept in a separate package (i.e. directory). However, in case of
modules that are strictly linked together, we admit reasonable exceptions to this rule.

The following are some additional points that explain the code structure and define the role of the software
manager, of the package coordinators, of the developers and of the users.

1. The code is structured in several packages, i.e. sub-directories of the main pkg directory.

2. Each package has a package coordinator, whose role is to maintain this piece of code, discussing further
developments with other developers and software coordinator.

3. Each developer is free to create and add new classes to its own package. If the class can be of general
use, the developer should contact the software manager to see if it is appropriate to locate the new
class in a more general package.

4. Each developer is free to commit new code into its own package(s). To add or modify code in other
packages, the developer should get in contact first with the relevant package coordinators and in case
of significant change with the software manager.

5. Whatever it is written in the previous, the most important one is always common sense and flexibility.
As far as the Cuore software developers group remains reasonable small, any well motivated and
exceptional violation of the above rules will be accepted. This is not to encourage violations, but not
to get stuck around the rules when needed.

1Yes, we do know some rules were not followed very strictly eveywhere, but we encourage to do so from now on as strictly

as possible!
2This rule is the almost ignored right now because we have introduced doxygen very recently. We encourage each developer

to start including as much documentation as possible into the code.

4

8 Implementing a module

Modules are atomic units designed to perform tasks on events. They can read all the information contained
in Event and, if needed, they can also modify the Event piece that the software administrator allowed to
write. We encourage the developer not to write fat modules with thousands lines of code, all the leading
code should be arranged in service classes to ensure code reusability. Therefore modules have to be intended
as interfaces between Diana and service classes performing all the leading operations.

Modules have to implement at least the three following methods:

• Init: It is executed before the event loop, put here all the code you need before event processing. It
should be intended as a constructor operator, so we suggest to put here all the initialization code,
leaving the constructor empty. You should put here things like members initialization, file opening,
config file parameters reading etc...

• Do: It is executed for each event in the event loop. Here you can get all the Event members and use
them within service classes. You can also set the Event members that this module has permission to
write (see 9).

• Done: It is executed at the end of the event loop. It should be intended as a destructor operator, so
put here all the delete and free instructions, file closing etc... leaving the destructor empty.

Modules can control the Diana flow by executing again the Sequence they belong to, this feature has been
designed for algorithms that need multiple iterations. In order to perform this operation use the following
methods:

• SetRunAgain: Set that the Sequence have to be executed another time or not (default).

• GetRunAgain: Get that the Sequence is being executed another time or not.

• GetIteration: Get the number of times the Sequence has been executed so far.

Modules can save temporary data, i.e. objects that will not be written in output files and live only inside
the Diana run. These object are useful to share informations beetwen modules that doesn’t need to be
dumped on output files:

• Event AuxData: use the Event method AuxData to access temporary data stored in each event. These
data live only in the event loop and get lost even if the Sequence is run another time.

• Sequence AuxData: use the Module method SeqAuxData to access temporary data stored in the
current sequence. These data remains alive even if the Sequence is run another time.

Instead of using the usual printf or cout output stream functions use the following commands that support
the printf syntax, each of them will print messages on the screen only if the verbose level set in the config
file is greater equal than the used one:

• Debug: code debugging

• Info: general information

• Warn: an error that Diana can handle and fix.

• Error: an error that Diana cannot handle but that doesn’t cause the stop of Diana run.

• Panic: an error that Diana cannot handle that causes the stop of the Diana run.

Modules can read configuration parameters from config file. if the parameter is not found the default
value provided by the user is used. Available methods are: GetInt, GetDouble, GetString, GetBool. Below
is a config file entry example for a generic module:

5

module ModuleName

##mandatory parameters

set verbosity level

verbosity = info

set if the module have to be loaded

enable = true

set if the module have save data into the event or not.

storedata = true

##module specific parameters

myvarint = 1

myvardouble = 1.0

myvarstring = hellocuore!

myvarbool = true

endmod

9 Diana event structure

The Diana event contains all the event by event data. Every datum or group of data are stored in EventData
classes that every module can read. Write access is given only to the module that owns an EventData
member. We expect a one-one correspondence between modules and EventData members. Regardless the
type or completeness of input data, the Diana Event will be always the same, with all its members, some
of them even uninitialized if the corresponding module has not been applied yet.

10 ROOT event structure

Events are stored on disk in form of ROOT files. ROOT events are converted in Diana events during the
Diana loop and converted back in ROOT file when writing on disk. These events are also suitable for
interactive use in the ROOT shell. At the moment we have three types of events:

• Cuoricino: Contains all the data dumped by the Milano-DAQ system (rawdata).

• Apollo: Contains all the data dumped by the Genova-DAQ system (rawdata).

• Diana: Contains the same data of the Diana event. After the first loop of Diana on rawdata the
dumped events will be of this third type, regardless they were in origin Cuoricino or Apollo events.

11 List of package coordinators

6

Package Name Coodinator e-mail Institution Note

apollobase marco.pallavicini@ge.infn.it Genova
apollomain marco.pallavicini@ge.infn.it Genova
apollotest andrea.giachero@ge.infn.it Genova / LNGS
apollodaq marco.pallavicini@ge.infn.it Genova
apollodb andrea.giachero@ge.infn.it Genova / LNGS
apolloele andrea.giachero@ge.infn.it Genova / LNGS
apollogui andrea.giachero@ge.infn.it Genova / LNGS
apollomsg andrea.giachero@ge.infn.it Genova / LNGS
apolloreader sergio.didomizio@ge.infn.it Genova
apolloslow andrea.giachero@ge.infn.it Genova / LNGS
apollosrvbase marco.pallavicini@ge.infn.it Genova
apollotrigger sergio.didomizio@ge.infn.it Genova
base marco.vignati@roma1.infn.it Roma
comm sergio.didomizio@ge.infn.it Genova
coretools ?? ??
dbbase marco.pallavicini@ge.infn.it Genova
dianadb marco.pallavicini@ge.infn.it Genova
dianaevent marco.vignati@roma1.infn.it Roma
dianaevtgui EGuardincerri@lbl.gov LBL
dianaframework marco.vignati@roma1.infn.it Roma
dianagui EGuardincerri@lbl.gov LBL
dianamain marco.vignati@roma1.infn.it Roma
mathtools riccardo.faccini@roma1.infn.it Roma
modcomputefft EGuardincerri@lbl.gov LBL
moddaq sergio.didomizio@ge.infn.it Genova
modfinddiscont EGuardincerri@lbl.gov LBL
modoptimumfilter riccardo.faccini@roma1.infn.it Roma
modtest marco.vignati@roma1.infn.it Roma
modulefactory marco.vignati@roma1.infn.it Roma
moduser marco.vignati@roma1.infn.it Roma
modbasicparams ?? ??
modwienerfilter ?? ??
modtimereorder ?? ??
modaveragepulse riccardo.faccini@roma1.infn.it ??
modnoise ?? ??
modcalib ?? ??
modenergy ?? ??
modloadcurve andrea.giachero@ge.infn.it Genova / LNGS
onlinemon andrea.giachero@ge.infn.it Genova / LNGS
parser marco.pallavicini@ge.infn.it Genova
readerdiana marco.vignati@roma1.infn.it Roma
readerqino EGuardincerri@lbl.gov LBL
rootevent marco.vignati@roma1.infn.it Roma
writerapollo sergio.didomizio@ge.infn.it Genova
writerqino marco.vignati@roma1.infn.it Roma
writerdiana marco.vignati@roma1.infn.it Roma

Table 1: List of packages under directory pkg. Some of them do not exist yet.

7

Module Name Package Module Goal

MARootFileReader readerapollo Reader for Apollo raw data root file
MRootFileReader readerdiana Reader for Diana output root file
MQinoDataReader readerqino Reader for Qino raw data files
MQinoNtupleReader readerqino Reader for Qino ntuples

MWriterApollo writerapollo Writer for raw data root files
MWriterDiana writerdiana Writer for Diana root files
MUserWriter writerdiana User defined simple and flat root file writer

MTimeReordering modtimereorder Order pulses according to time. Qino only.
MRemoveRetriggers modretrigger Remove double or multiple pulses. Qino only.

MComputeFFT modcomputefft Compute FFT of a pulse
MAveragePulse modaveragepulse Compute average pulse with heater and real pulses
MNoiseSpectrum modnoise Compute noise Fourier spectrum
MWienerFilter modwienerfilter Compute Wiener filter
MWienerFindPileUp modwienerfilter Search for pulse multiplicity and positions
MPrepulseAnalysis modprepulse Compute slope and shape of baseline before pulse
MPulseBasicParameters modbasicparams Compute height, rise time and decay time and others
MOptimumFilter modoptimumfilter Compute optimum filtered pulse
MOFPulseHeight modoptimumfilter Compute pulse height from OF pulse
MOFPulseShape modoptimumfilter Compute pulse shape variables from OF pulse

MFindTDiscontinuities modfinddiscont Search for Temp discont. based on thermometer
MFindCDiscontinuities modfinddiscont Search for Temp discont. based on heater pulses
MComputeCorrectParams modfinddiscont Compute parameters for gain correction
MCorrectGainDrift modfinddiscont Correct amplitude for gain drift
MCheckStabilization modfinddiscont Check stabilization quality

MSelectEventXXXX modselectevent Select events with features defined by XXXX
MCalibParameters modcalib Compute calibration parameters for each channel
MEnergy modenergy Compute energy of a pulse using calibration data

MLoadCurveReader modloadcurve Special reader that accepts load curve files
MLoadCurveVI modloadcurve Compute load curve online using baselines
MFindWorkPoint1 modloadcurve First work point approximation (inversion point)
MFindWorkPoint2 modloadcurve Work point as maximum amplitude of heater pulse
MFindWorkPoint3 modloadcurve Work point as maximum signal / noise using OF

MTestModule modtest Simple test module with no specific purpose
MUserModule moduser Empty user module that any user can fill freely

Table 2: Preliminary list of modules. Most of them do not exist yet, and are given here for future reference.

8

