First Results of the Cuoricino Experiment

Stefano Pirro
on behalf of the CUORE collaboration*

*Dipartimento di Fisica dell’ Università di Milano Bicocca and Sez. INFN di Milano - Milano - Italy
Lawrence Berkeley Laboratory, Berkeley - California - USA
Dipartimento di Scienze Chimiche, Fisiche e Matematiche dell’Università dell’ Insubria, Italy
Dipartimento di Fisica dell’Università and Sez. INFN di Firenze - Firenze - Italy
Kamerling Onnes Laboratory, Leiden University - Leiden - The Netherlands
Laboratori Nazionali del Gran Sasso, INFN - L’Aquila - Italy
Department of Physics and Astronomy, University South Carolina - Columbia S. C. - USA
Laboratori Nazionali di Legnaro, INFN - Padova - Italy
Lab. of Nucl. and High En. Physics, University of Zaragoza - Zaragoza - Spain
Thermal Detectors

\[\frac{dR}{dE} \approx 20 \text{k}\Omega/\text{keV} \]

- heat sink \((\sim 9 \text{ mK})\)
- weak thermal coupling \((\sim 4 \text{ pW/mK})\)
- thermometer \((\text{NTD Ge, } R \sim 100 \text{M}\Omega \text{, } I \sim 50 \text{ pA})\)
- crystal absorber \((\text{TeO}_2)\)

incident particle

\(R_{\text{load}}\)

\(R(T)\)

\(R_{\text{load}}\)
Thermal Detectors - Stability

FWHM @2615 = 6 keV

FWHM @2615 = 30 keV

FWHM @~8MeV ~ 90 keV

FWHM @~8MeV ~ 5 keV
Mibeta (130Te)

5 modules, 4 detectors each, arranged in a tower-like structure (6.8 kg)

Every detector is a TeO$_2$ crystal 3x3x6 cm3 (340 g)

Cold finger: 7 mK

The tower was surrounded by a Roman lead inner shield
Mibeta Results

Total background spectrum of the 20 crystal array around the DDB0ν region

![Graph showing energy spectrum with DBD Q-value highlighted]

Total statistic \(\sim 4.3 \text{ kg x y.} \)

\[\text{Bkg} \sim 0.3 \text{ c/keV/kg/y} \]

\[\tau_{1/2}^{0\nu} \geq 2.08 \times 10^{23} \text{ y} \ [90\% \text{ CL}] \]

\[\langle m_\nu \rangle \leq 1.1 - 2.6 \text{ eV} *[90\% \text{ CL}] \]

The central detectors are almost completely surrounded by active materials.
Substantial improvement in BKG reduction.

11 modules
4 detectors each
Dimension: 5x5x5 cm3
Mass: 790 g

2 modules
9 detectors each,
Dimension: 3x3x6 cm3
Mass: 340 g

Total mass
40.9 kg
Cuoricino Single Module

A Cuoricino module

Ge NTD thermistor
Almost all the operations done in nitrogen atmosphere
Tower assembling

Stefano Pirro

Taup 2003, Seattle 5-9
Overall Layout

MIBETA

CUORICINO

Stefano Pirro

Taup 2003, Seattle 5-9
Cool down: february 2003

Detectors: 14 electrical connection were lost during the cooling of the tower, as a result 14 detectors cannot be read-out (to recover the electrical connections it is necessary to warm up the cryostat)

4x11 = 44 large size crystals (~5x5x5 cm\(^3\) av. mass = 790 g)
9x2 = 18 small size crystals (~3x3x6 cm\(^3\) av. mass = 330 g)

Active mass during this run:

- 32 working
- 16 working

\[
\begin{align*}
32 \times 0.790 &= 25.28 \text{ kg} \\
12 \times 0.330 &= 3.96 \text{ kg} \\
2 (^{130}\text{Te-enriched}) \times 0.330 &= 0.495 \text{ kg}^{130}\text{Te} \\
2 (^{128}\text{Te-enriched}) \times 0.330 &= 0.543 \text{ kg}^{128}\text{Te}
\end{align*}
\]

Total active mass: 10.4 kg \(^{130}\text{Te}\)
Detectors performances

Pulse height distribution μV/MeV
(normalized to 1 kg of TeO$_2$)

- Average pulse height for 5x5x5 crystals = 340 μV/MeV
- Average pulse height for 3x3x6 crystals = 440 μV/MeV

FWHM [keV] of the 2615 keV gamma line of 208Tl (calibration with a 232Th source ~ 3 days)
- Average 5x5x5 cm3 crystals ~ 7 keV
- Average 3x3x6 cm3 crystals ~ 9 keV

Stefano Pirro

Taup 2003, Seattle 5-9
232Th Calibration

Sum spectrum of all the 5x5x5 cm³ detectors

$\Delta E_{FWHM} = 7$ keV @ 2615 keV
Background in the γ region

γ peaks from ^{60}Co, ^{40}K and ^{208}Tl have a higher intensity in CUORICINO.
But the lateral lead shielding is now 2 cm less.
We see the 2505 sum line of ^{60}Co (4 ± 1.5) c/kg/y.
Background in the α region

Uranium α line are reduced

<table>
<thead>
<tr>
<th>Energy Range</th>
<th>MiDBD-II</th>
<th>Cuoricino</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000-2000 c/keV/kg/y</td>
<td>$3.07 \pm .1$</td>
<td>$3.39 \pm .05$</td>
</tr>
<tr>
<td>2000-3000 c/keV/kg/y</td>
<td>$0.533 \pm .004$</td>
<td>$0.38 \pm .02$</td>
</tr>
<tr>
<td>3000-4000 c/keV/kg/y</td>
<td>$0.243 \pm .003$</td>
<td>$0.23 \pm .02$</td>
</tr>
<tr>
<td>4000-5000 c/keV/kg/y</td>
<td>$1.84 \pm .01$</td>
<td>$0.55 \pm .02$</td>
</tr>
</tbody>
</table>
Preliminary result on 130Te $\beta\beta$–0ν decay

anticoincidence spectrum, only 5x5x5 crystals

0.23 ± 0.04 c/keV/kg/γ

Statistic collected: 2,26 kg × γ

\[\tau_{1/2}^{0ν} \geq 5 \times 10^{23} \text{y (90\% CL)} \]
Background sources

Extremely low statistics, need to be confirmed also by simulations

BKG in the $\beta\beta_{0}\nu$ seems to be due to ^{208}Tl γ’s
Stefano Pirro

2480-2600 keV ($\beta\beta^{130}$Te transition energy = 2528.8 keV)
anticoincidence spectrum, only 5x5x5 crystals

$b = 0.23 \pm 0.04$ c/keV/kg/y

3 year sensitivity CUORICINO (full mass): $b=0.23$ $\Gamma=8$ keV

$F^{0\nu}_{3 years} \approx 1 \times 10^{25}$ y
CUORICINO TO CUORE

CUORICINO proves the feasibility of a large bolometric array with the tower-like structure. Detector performances are not affected by the increase in crystal size (from 340 g to 790 g).

Array of 1000 detectors:
- 25 towers
- 10 modules/tower
- 4 detectors/module

\[M = 0.75 \text{ ton} \]
A completely new set-up will allow the optimization of shielding.

CUORE is specifically designed to reduce as far as possible the amount of materials interposed between the crystals.

The high granularity of the CUORE detector will allow to use with high efficiency the coincidence/anticoincidence technique to identify and reject background events.

Contribution to the ββν region from bulk contaminations

- TeO$_2$: 4.1×10^4 c/keV/y/kg
- Copper: 2.7×10^4 c/keV/y/kg
- Lead: 3.5×10^4 c/keV/y/kg

1×10^3 c/keV/Y/kg

4.4×10^4 c/keV/y/kg

10^4 c/keV/y/kg

45×10^4 c/keV/y/kg

6×10^3 c/keV/Y/kg

The main task is the reduction of *surface radioactivity*.

To reach the background goal we need to improve by a factor ≈ 200.

From geometry we can gain a factor $5 \div 10$.

\Rightarrow we need to reduce surface radioactivity “only” by a factor $20 \div 40$.
Conclusions

- CUORICINO gave the first encouraging results
- It also demonstrated the feasibility of a larger Experiment
- We plan to recover in October all the detectors
- We will start within this year the R&D on CUORE detectors