CUORICINO results & perspectives for CUORE

Fabio Bellini

Università di Roma "La Sapienza" & INFN Roma on behalf of the CUORE Collaboration

9th International Workshop on Particle Physics and the Early Universe Bonn, Germany Aug 28-Sept 01 2005

Neutrinoless Double Beta Decay: ββ0ν

- From ν oscillation experiments: $M_{\nu} \neq 0$, $|\Delta M_{12}^2| << |\Delta M_{13}^2|$
- ◆ Still missing: absolute mass scale and hierarchy, phases, Dirac or Majorana nature?

$$\beta\beta0\nu:(A,Z)\rightarrow(A,Z+2)+2e^{-}$$

Forbidden in Standard Model even for Dirac massive v

chirality flip:
$$m_y \neq 0$$

 $v_{majorana}$: $v \equiv \overline{v}$ (Lepton number violation)

phase space $\sim Q^5$ $(\tau^{\beta\beta0\nu})^{-1} = G(Q, Z) M \qquad |^2|/m$

Effective Majorana mass

v mixing matrix and phases

$$(\tau^{\beta\beta0\nu})^{-1} = G(Q,Z) M_{nucl}^{2} |\langle m_{\beta\beta} \rangle|^{2}$$

$$\langle m_{\beta\beta} \rangle = \sum_{k} m_{\gamma k} (\eta_{k} |U_{ek}|^{2})$$

Nuclear matrix element(NME): big uncertainties

Constraints on $m_{\beta\beta}$ translate in limits on $m_{\nu min}$

• One controversial claim (4.2 σ) Klapdor-Kleingrothaus et al. Phys. Lett. B 586 (2004) 198 $\langle m_y \rangle < [0.1 \div 0.9] eV best value \langle m_y \rangle = 0.44 eV$

CUORICINO experimental approach

- ◆Bolometric technique: energy is measured as a temperature increase in the detector
- ♦ Homogeneous detector: ββ0ν source = absorber

- Low temperature calorimeter
 - Δ T= E/C ⇒ low C ⇒ dielectrics @ low T (~ 10mK) : C~T³
 - Thermometer: NTD Ge thermistor $\Delta T \Rightarrow \Delta R$ $\Rightarrow 0.1 \text{ mK/MeV} \rightarrow 1 \text{mV/MeV}$
- Statistical fluctuation: $\sigma(E) = K_B CT^2 \sim 10 \text{ eV}$
- Typical pulse decay time: $\tau \sim 10^{2-3}$ ms

- ◆ Active isotope: ¹³⁰Te
 - Natural abundance 33.9% ⇒ low cost
 - ◆ Transition energy $Q_{\beta\beta} = (2528.8 \pm 1.2)$ KeV large phase space and low background
 - Predicted half life:

$$\langle m_{\nu} \rangle \approx 0.3 \, eV \rightarrow \tau^{\beta\beta 0\nu} \approx 10^{25} \, \text{y}$$

- Absorber material: TeO₂
 - **◆**Low heat capacity
 - ◆Possibility to grow large crystals
 - **◆**Good intrinsic radio-purity

Homogeneous Detector sensitivity

• Sensitivity $S^{\beta\beta0v}$: lifetime corresponding to the minimum number of detectable events above background @ a given C.L.

detector mass [kg] • measuring time [y]

$$S^{\beta\beta0\nu}\propto a\cdot\epsilon \left(\frac{MT}{\Gamma b}\right)^{1/2}$$

$$\Rightarrow \qquad \langle m_{\beta\beta} \rangle \propto \frac{1}{(a \epsilon G)^{1/2} |M_{nucl}|} \cdot \left(\frac{b \Gamma}{MT} \right)^{1/4}$$

isotopic abundance • detector efficiency

• Irreducible background from SM allowed $\beta\beta2\nu$:

energy resolution[keV] •bkgd [counts/keV/Kg/y]

$$(A,Z) \rightarrow (A,Z+2)+2e^{-}+2\bar{\nu}_{e}$$

- ${}^{\bullet}$ ββ2ν:continuum with maximum @ Q/3
- $\bullet \beta \beta 0 \nu$:sharp peak at Q_{max} smeared by detector resolution
- ► Look for (A-Z) even-even nuclei: ββ2ν suppressed
- Need excellent ∆E resolution

CUOR(ICINO) @ LNGS

Cuoricino experiment is installed in the

Underground National Laboratory of Gran Sasso L'Aquila – ITALY

the mountain providing a 3500 m.w.e. shield against cosmic rays

CUORICINO Tower

Total Active mass:

 \rightarrow TeO₂ = 40.7 Kg

 130 Te = 14.1 Kg

 $\bullet^{128} \text{Te} = 0.54 \text{ Kg}$

Installed in a dilution refrigerator (10 mK) surrounded by:

- Roman Pb inner shield (1cm) lateral
 - 20 cm Pb external shield
 - Neutron shield:

B-polyethylene ~10 cm

Anti-radon box: nitrogen overpressure

CUORICINO assembly

- Careful material selection: crystals grown from pre-tested activity powders
- Careful cleaning of PTFE, Cu and TeO₂ surfaces
- Clean conditions for detector assembling

Data taking and performances

♦ CUORICINO duty cycle: Source calibration Th wires ~3days **Bkgd measurements ~3-4weeks**

live time ~64%

Calibration spectra: energy resolution

• 232 Th γ -source external to the cryostat:

 $<\Delta E>$ @2615 KeV 208 Tl γ -line

average 5x5x5 cm³ crystal: FWHM 7.5±2.9 KeV

average 3x3x6 cm³ crystal: FWHM 9.6±2.5 KeV

Sum background spectra

$<\Delta E>$ @2615 KeV

5x5x5 cm³ crystal 3x3x6 cm³ natural crystal 3x3x6 cm³ enriched crystal

4.3Kg ¹³⁰Te•y 0.5Kg ¹³⁰Te•y

0.5Kg ¹³⁰Te•y FWHM ~12KeV 0.2Kg ¹³⁰Te•y peak not visible

FWHM ~7.5KeV

CUORICINO ββ0ν result

◆ Total statistics: **5 Kg** ¹³⁰**Te** • **y**

- **◆**ML fit in **2470-2560 KeV** region
- **No peak found** @ $\beta\beta0\nu$ energy
- ♦Bkgd (ββ0ν region): $0.18 \pm 0.01 \text{ c/keV/Kg/y}$
- ◆Detector efficiencies: ~86.4%
- ◆Fitting systematic error: ~5%

hep-ex/0501034 accepted by PRL

$$\tau_{1/2}^{\beta\beta0\nu} > 1.8 \cdot 10^{24} y @ 90 C.L. \Rightarrow \langle m_{\beta\beta0\nu} \rangle < [0.2 \div 1.1] eV$$

Expected sensitivity in 5 years :
$$\langle m_{\nu} \rangle < [0.07 \div 0.5] eV$$

Spread due to NME uncertainties

CUORICINO sensitivity & discovery potential

CUORICINO results: $\langle m_{\beta\beta0\nu}\rangle < [0.2 \div 1.1]eV$

Klapdor-Kleingrothaus HM: $\langle m_{\nu} \rangle < [0.1 \div 0.9] eV \langle m_{\nu} \rangle = 0.44 eV$

A. Strumia, F. Vissani hep-ph 05030246

• Could CUORICINO test HM result?

Nuclear Matrix Element Staudit et al.

- Good chances to have a positive indication
- But : cannot falsify HM if no signal is seen

Cryogenic Underground Observatory for Rare Events

ββ0v, Cold Dark Matter, Axions searches proposal hep/ph 0501010

CUORE expected sensitivity

CUORE GOAL:

test inverse hierarchy: 10-50 meV

In five years of data taking

B(counts/keV/kg/y)	$\Delta ({ m keV})$	$T_{1/2}(y)$	$ \langle m_{\nu} \rangle \text{ (meV)}$
0.01	10	1.5×10^{26}	23-118
0.01	5	2.1×10^{26}	19-100
0.001	10	4.6×10^{26}	13-67
0.001	5	6.5×10^{26}	11-57

Spread due to NME uncertainties: main obstacle to answer basic questions on v nature

CUORICINO vs CUORE ββ0v background

• CUORICNO ββ0ν background:

- preliminary
- ◆ ~40% 2615keV ²⁰⁸Tl line tail: from Th chain via multi-Compton events. <u>Source located in the cryostat</u>
- ◆ ~60% flat bkgd: degraded α particles from crystal surface(10%) & material facing crystals (50%)
- ◆ ~negligible contribution from 2515 KeV ⁶⁰Co tail due *Cu cosmogenic activation*

- CUORE Evaluation (MonteCarlo simulation based on CUORICINO, miDBD, Ge measurements)
 - ◆ Neutron & environmental background reduced by lead and neutron shield
 - **◆ Cosmogenic Cu and Te activation** reduced by **underground storage of materials**
 - ♦ $\beta\beta2\nu$ decay contribution < 10^{-3} counts/kev/KeV/y
 - ♦ Bulk contaminations: $Te0_2 \sim 10^{-13}$ g/g, Cu $\sim 10^{-12}$ g/g $\Rightarrow 2 \cdot 10^{-3}$ counts/kev/KeV/y $\stackrel{\text{no problem}}{=}$ 2615keV 208 Tl reduced by properly shielding in CUORE cryostat + selection of construction materials
 - → Surface contmination ~10⁻⁹g/g for Te0₂& Cu ⇒ 7•10⁻² counts/kev/KeV/y problem!!

 Reduced by compact and granular CUORE structure (self-shielding detector) but not enough to reach CUORE goal: require reduction factor 4 for Te0 & 10 for Cu surface

CUORE R&D

Cleaning test (Hall C Sept-Nov 2004):

- **◆ CU:** etching, electro-polishing, passivation
- ♦ Crystal: etching (Nitric acid), lapping with clean powder (2µ SiO₂)
- **◆** New assembling procedure with selected materials
- Reduction of a factor 4 on crystal surface contamination(<u>CUORE milestone reached</u>) and a factor 2 on Cu surfaces (still a factor 5 missing)
- New passive procedure (plasma cleaning) & surface sensitive detectors development for active bkgd rejection *under test*

Conclusion

→ CUORICNO:

• The most sensitive $\beta\beta0\nu$ decay running experiment:

$$\tau_{\scriptscriptstyle 1/2}^{\beta\beta0\nu} > 1.8 \cdot 10^{24} \, y @ 90 \, C.L. \Rightarrow \langle m_{\beta\beta0\nu} \rangle < [0.2 \div 1.1] \, eV$$

- Good chances to confirm KK-HM experiment
- CUORICNO proved the feasibility of CUORE
- Crucial informations for background identification

→ CUORE:

- Cryostat and hut construction will start soon
- Intense R&D activity to reduce background and optimize construction and assembly
 - Enrichment option still open: only core (2nd phase)
 - The inverse hierarchy will be explored
 - Start data taking: 1st January 2010