New CUORICINO results and status of CUORE

Oliviero Cremonesi INFN, Sezione di Milano and Università di Milano-Bicocca, Milano, Italia on behalf of the CUORE collaboration

- LTD's for Neutrinoless Double Beta Decay
- CUORICINO
 - construction
 - detector performance
 - results
 - background
- Perspectives for CUORE

NANP05 - Dubna June 20-25 2005, Russia

The CUORE Collaboration

J. Beeman¹, M.Dolinski¹, T.D. Gutierrez¹, E.E. Haller^{1,2}, R. Maruyama¹, B. Quiter¹, A.R. Smith¹ and N. Xu¹ ¹Lawrence Berkelev National Laboratory ²University of California, Berkelev CA 94720, USA A. Giuliani, M. Pedretti and S.Sangiorgio Dipartimento di Fisica e Matematica dell'Università dell'Insubria e Sezione di Milano dell' INFN, Como I-22100, Italy M. Barucci, E. Olivieri, L. Risegari, and G. Ventura Dipartimento di Fisica dell' Università di Firenze e Sezione di Firenze dell' INFN, Firenze I-50125, Italy M. Balata, C. Bucci, and S.Nisi Laboratori Nazionali del Gran Sasso, I-67010, Assergi (L'Aguila), Italy V. Palmieri Laboratori Nazionali di Legnaro, Via Romea 4, I-35020 Legnaro (Padova) A. de Waard Kamerling Onnes Laboratory, Leiden University, 2300 RAQ Leiden E.B. Norman Lawrence Livermore National Laboratory, Livermore, California, 94550, USA C. Arnaboldi, C. Brofferio, S. Capelli, F. Capozzi, L. Carbone, M.Clemenza, O. Cremonesi, E. Fiorini, C.Nones, A. Nucciotti, M. Pavan, G. Pessina, S. Pirro, E. Previtali, M. Sisti, L.Torres and L.Zanotti Dipartimento di Fisica dell'Università di Milano-Bicocca e Sezione di Milano dell'INFN, Milano I-20126, Italy R. Ardito, G. Maier Dipartimento di Ingegneria Strutturale del Politecnico di Milano, Milano I-20133, Italy E.Guardincerri, P. Ottonello and M.Pallavicini Dipartimento di Fisica dell'Universita' di Genova e Sezione di Genova dell'INFN, Genova I-16146, Italy D.R. Artusa, F.T. Avignone III, I. Bandac, R.J. Creswick, H.A. Farach, and C. Rosenfeld Department of Physics and Astronomy, University of South Carolina, Columbia S.C. 29208 USA S. Cebrian, P. Gorla, I.G. Irastorza Lab. of Nucl. and High Energy Physics, University of Zaragoza, 50009 Zaragoza, Spain F.Bellini, C.Cosmelli, I.Dafinei, M.Diemoz, F.Ferroni, C.Gargiulo, E.Longo, S. Morganti Dipartimento di Fisica dell'Universita' di Roma e Sezione di Roma 1 dell'INFN, Roma I-16146, Italy

Neutrinoless Double Beta Decay

 \diamond constraints on $\langle m_{\nu} \rangle$ can translate in constraints on m_{min}

Low Temperature Detectors (LTD)

Detection Principle

 △T=E/C C thermal capacity
 ♦ low C
 ♦ low T (i.e. T≪1K)
 ♦ dielectrics, superconductors
 ultimate limit to E resolution: statistical fluctuation of internal energy U
 (△U²) = k_BT²C

Thermal Detectors Properties

- ▲ good energy resolution
- ▲ wide choice of absorber materials
- ▲ true calorimeters
- **v** slow $\tau = C/G \sim 1 \div 10^3$ ms

example: 760 g of TeO₂ @ 10 mK $C \sim T^3$ (Debye) $\Rightarrow C \sim 2 \times 10^{-9}$ J/K 1 MeV γ -ray $\Rightarrow \Delta T \sim 80 \mu$ K $\Rightarrow \Delta U \sim 10 \text{ eV}$

TeO2 LTD's

Calorimeters

- source \subseteq detector
 - ▲ large N_{nudei}
 - \land high energy resolution ΔE
 - high efficiency
- measure E = E_{β1} + E_{β2}
 signature: a peak at Q_{βB}

TeO, thermal calorimeters

- Active isotope ¹³⁰Te
 - natural abundance: a.i. = 33.9%
 - ▲ transition energy: $Q_{_{\beta\beta}} = 2529 \text{ keV}$
 - encouraging predicted half life $\langle m_{\nu} \rangle \approx 0.3 \text{ eV} \Leftrightarrow \tau_{\nu}^{0\nu} \approx 10^{25} \text{ years}$

Absorber material TeO₂

- Iow heat capacity
- large crystals available
- radiopure

The CUORE project

CUORE expected sensitivity

CUORE $\beta\beta(0\nu)$ sensitivity will depend strongly on the background level and detector performance.

A.Strumia and F.Vissani.: hep-ph/0503246

element uncertainty

In five years:

B(counts/keV/kg/y)	$\Delta (\text{keV})$	$T_{1/2}(y)$	$ \langle m_{\nu} \rangle \text{ (meV)}$
0.01	10	1.5×10^{26}	23 - 118
0.01	5	2.1×10^{26}	19 - 100
0.001	10	4.6×10^{26}	13-67
0.001	5	$6.5{\times}10^{26}$	11-57

CUORICINO

Slightly modified single CUORE tower

test:

- Iarge mass TeO₂ detectors
- tower-like structure of CUORE sub-elements
- background origin and reduction techniques

independent experiment:

- important results on
 - ¹³⁰Te Neutrinoless Double Beta Decay
 - WIMP Dark Matter

Laboratori Nazionali del Gran Sasso, Hall A same cryostat which hosted Mi-DBD 20 crystal array

LNGS LTD Underground Facilities

CUORE R&D (Hall C)

Underground National Laboratory of Gran Sasso L'Aquila – ITALY 3500 m.w.e.

> CUORICINO - CUORE (Hall A)

CUORICINO tower

mixing chamber *T* ≈ 6 mK

roman Pb shielding (1 cm lateral) external shields:

- 10 cm Pb + 10 cm low act Pb
- neutron shield: B-polyethylene
- nitrogen flushed anti-radon box

CUORICINO tower (2)

central crystal has a 4π active shielding like in CUORE configuration ⇒ anti-coincidence for background reduction

- 11 modules with 4 big detectors
 - 44 TeO₂ crystals
 - 5×5×5 cm³ ⇒ 790 g
 - \triangleright TeO₂ mass \Rightarrow 34.76 kg

Total number of detectors: 62

- 2 modules with 9 small detectors
 - 18 TeO₂ crystals
 - 3×3×6 cm³ ⇒ 330 g
 - \triangleright TeO₂ mass \Rightarrow 5.94 kg
 - 4 crystals are enriched
 - 2×¹³⁰TeO₂ + 2×¹²⁸TeO₂

■ total active mass $ightarrow \text{TeO}_2
ightarrow 40.7 \text{ kg}$ $ightarrow ^{130}\text{Te}
ightarrow 14.1 \text{ kg}$ $ightarrow ^{128}\text{Te}
ightarrow 0.54 \text{ kg}$

CUORICINO assembly

crystal surface cleaning

thermistor & heater gluing

- careful material selection
- careful cleaning of Cu and TeO₂ surfaces
- clean conditions for detector assembling
 - clean room
 - nitrogen atmosphere to avoid radon contaminations

CUORICINO assembly (2)

CUORICINO final assembly

Tower positioning system

Roman lead shield and suspension

CUORICINO data taking

February 2003 - April 2005

RUN I Cooling down: February 2003 Detectors: some electrical connection lost during tower cooldown 30 790g detectors
 16 330g detectors
 ▷ TeO₂ → 29 kg
 ▷ ¹³⁰Te → 7.98 kg
 ▷ ¹²⁸Te → 7.36 kg

40 790g detectors
 18 330g detectors
 ▷ TeO₂ → 37.5 kg
 ▷ ¹³⁰Te → 10.3 kg
 ▷ ¹²⁸Te → 9.53 kg

RUN II

Cool down: May 2004 Detectors: two unrecovered detectors and two with excess noise

CUORICINO DUTY CYCLE Source calibration: Th wire ~ 3 days Background measurement: 3-4 weeks

ββ (background) live time ~ 64%

Detector response

Detector response

pulse height distribution

Calibration spectra: energy resolution

Detector performance: background

 $\langle \Delta E \rangle$ @ 2615 keV in the sum bkg spectra of:

 $5x5x5 \text{ cm}^3 \text{ cryst.}$ $4.3 \text{ kg}^{130}\text{Te} * \text{y} - \text{FWHM} \sim 7.5 \text{ keV}$ $3x3x6 \text{ cm}^3 \text{ nat. cryst.}$ $0.5 \text{ kg}^{130}\text{Te} * \text{y} - \text{FWHM} \sim 12 \text{ keV}$ $3x3x6 \text{ cm}^3 \text{ enrich. cryst.}$ $0.2 \text{ kg}^{130}\text{Te} * \text{y} - \text{peak not visible}$

Neutrinoless DBD results

Neutrinoless DBD results

statistics:

anticoincidence spectrum

detector efficiencies: 86.4% (790g) and 84.5% (330g)

- run I + run II (3 April 2005) = 5 kg ¹³⁰Te x year
- No peak is observed at the 0vDBD transition energy (2528.8 keV)
- Bkg counting rate in the 0nDBD region = 0.18 ± 0.02 c/keV/kg/y

procedure:

- Maximum Likelihood + flat background + fit of the 2505 keV peak
- energy region = 2470 2560 keV
- response function = sum of N gaussian each with the characteristic FWHM resolution at 2615 keV of the nth detector

result:

$\tau_{1/2} > 1.8 \ 10^{24}$ at 90% C.L. (<mv> < [0.2+1.1] eV)

- best fit yields a negative effect ...
- ~5% variation of the limit when changing the energy region, the bkg shape (linear or flat) and when including/excluding the 2615 keV peak

CUORICINO: background

Gamma region, dominated by gamma and beta events, highest gamma line = 2615 keV ²⁰⁸TI line (from ²³²Th chain)

Alpha region, dominated by alpha peaks (internal or surface contaminations)

Background model

Background sources

- bulk contaminations of setup materials
- cosmic rays
- Neutrons
- ► surface contaminations (e^{-λx}) of detector elements

Experimental measurements

- MiDBD I+II
- CUORICINO

Monte Carlo simulations

- GEANT4 (+decay chains generator)
- **FLUKA**
- ► YIELDX

detailed description of

- Detector
- Cryogenic setup
- Radiatiopn shields

Background results and CUORE perspectives

γ-region

- bulk contaminations of detector and cryogenic setup materials
 - required contamination levels in agreement with Ge detector measurements

α-region

- surface contaminations of detector materials (crystal & mounting structure)
 - exponential density profile (e^{-λx}: λ=0.1-10 μm)
 - required contamination levels (when considered as distributed over a thin surface layer)
 - are 2-3 orders of magnitude larger than the bulk values of the corresponding materials
- preliminary HR ICPMS measurements of CUORICINO copper samples seem to confirm both contamination levels and density profiles

Surface cleaning procedure can be improved ββ(0v) Monte Carlo evaluations based of CUORICINO background results and available bulk contamination limits from Ge measurements:

bulk	3.8 × 10⁻³	couns/keV/kg/y						
surface (TeO2)	2 × 10 ⁻²	couns/keV/kg/y						
surface (Copper)	5 × 10 ⁻²	couns/keV/kg/y						
UOPE consitivity goal can be reached								

CUORICINO background

2615 keV TI line \Rightarrow contribution to the DBD bkg due to a Th contamination.

- Most probable location: in between the inner Roman lead shield and the external lead shield (clear indications from the intensity ratios of Th gamma lines at different energies).
- **Measured bkg shape**: good agreement with MonteCarlo simulations and source calibration measurement (Th wire inserted just outside the cryostat OVC).
- Th (TI) contribution to DBD background: ~ 40% (preliminary)

No other gamma lines identified near or above the 0vDBD transition energy \Rightarrow no contributions from other gamma sources.

2505 keV line: sum of the 2 ⁶⁰Co gammas(1173 and 1332 keV)

- Individual ⁶⁰Co lines: clearly observed in the bkg spectrum (almost uniform counting rate on the different TeO2 bolometers)
- Most probable source: neutron activation of the Copper detector structure
- Contribution to DBD background: negligible (beta tail accompanying the 2505 peak)

CUORICINO background (2)

Flat background in the energy region above the ²⁰⁸Tl 2615 line

- Natural extrapolation to the region below the 2615 keV peak
- Contribution to the counting rate in the 0nDBD region: ~ 60% (preliminary)

What are the possible sources of this flat background?

CUORICINO flat background

neutrons

- Cuoricino neutron shield (10 cm borated polyethylene) didn't show any significant variation in the 3-4 MeV counting rate when mounted around the MiDBD experiment
- Low statistics \Rightarrow poor limit: neutrons can still account for a fraction of the observed background

degraded alpha particles from crystal surface contaminations,

- various alpha peaks observed in the background spectrum,
- central energies, low energy tails and scatter plots of coincident events prove that these peaks are due to a surface contamination of the crystals (mainly in ²³⁸U)
- Estimated contribution (spectra of coincident events on facing crystals): ~ 10%

degraded alpha particles contaminations of the inert materials facing the crystals

- No direct evidence of the existence of this contamination that according to our
- MonteCarlo simulations (few micron surface layers) give simply a continuum background with no clear signature.
- Most likely source of the missing 50% necessary to account for the 0vDBD counting rate

CUORICINO sum spectrum

CUORE background

Evaluation of the expected CUORE background based on the contamination levels measured so far (MiDBD, CUORICINO and Ge measurements) for available materials

Bulk contaminations $TeO_2 \sim 10^{-13} g/g$ $Cu \sim 10^{-12} g/g$ Surface contamination $\sim 10^{-9} g/g$ for TeO2 and Cu $\Rightarrow < 7x10^{-2} counts/kev/kg/y$

Required reduction factors:

- 10 in Cu surface contamination
- ✓ 4 in TeO₂ surface contamination

CUORICINO vs. CUORE: background

BULK Contaminations: ²⁰⁸TI 2615 keV line

²⁰⁸TI 2615 keV line ascribed to a ²³²Th contamination of the cryostat structure

CUORICINO: old crystat (20 year)

- reduced experimental space: no room for massive ultrapure lead shield inside the cryostat
- relaxed constraints on cryostat construction material selection

CUORE

- cryostat specifically designed in order to maximize the shield efficiency this
- severe selection of construction materials

SURFACE Contaminations: 3-4 MeV continuous background

- Proper surface treatments (with ultrapure materials and tools) of all the detector components + Proper diagnostics
 - Bolometric measurements
 - Recent test on 8 crystals (CUORE-like): improved surface treatment (developed@LNGS) reduced crystal surface contamination by a factor ~ 4
 - ★ a dedicated array of 8 5x5x5 cm3 crystals operated in Hall C
 - ICMPS bulk and surface measurement
 - Iow bkg Ge spectroscopy
- Surface Sensitive Bolometers (SSB)

RAD

Radioactivity analysis Array of 8 Detectors:

- mini-tower of two single CUORE modules
- cleaned with ultra-radiopure materials and procedures
 - Cu: etching, electropolishing and passivation
 - TeO2: etching and lapping with radiopure acid and powders
 - Assembling with clean materials
- most sensitive detector for surface contaminations
 - sensitive to secular equilibrium breaks

RAD November 2004 run

sensitive reduction of TeO₂ crystal surface contribution

RAD results

Reduction of a factor ~ 4 on crystal surface contaminations: CUORE milestone for this task reached

Crystal Bulk contamination $\sim 10^{-14}$ g/g in U and Th

April 2005 measurement:

significant contributions from PTFE, wires anf Si heaters excluded

From CUORICINO to CUORE

CUORICINO

- Relatively large size crystals (790 g) without loss of performance
- Large bolometric array with the tower-like structure
- Long runs with excellent duty cycle
- Most relevant background sources identification
- First steps towards background reduction

CUORE

- Completely new set-up with optimized shielding structure
- specifically designed to reduce as far as possible the amount of materials interposed between the crystals
- high granularity for background events identification and rejection (coincidence/anticoincidence technique)
- radiopure materials for detector and cryostat structure

Ongoing activities:

- Construction material selection is started
- Big efforts for the identification/reduction and control of the source responsible of the Cuoricino DBD background (cleaning techniques, radiactivity level measurement, surface sensitive detectors, detetor and setup structure optimization)

CUORE: status

2nd April 2004 Experiment approval by S.C. of LNGS
7th June 2004 Scientific approval CSN2 of INFN
September 2004 Final location @ LNGS
September 2004 Approval of CUORE plan by CSN2
2005 activities + CUORE dilution refrigerator funded by INFN

CUORE time schedule

Start date: 1st January 2005		2005	2006	2007	2008	2009
Crystals	US					
Material Selection						
Procedure settling						
Growth and preparation						
Thermistors	US					
R&D and Ge irradiation						
Decay period						
Production						
Detector structure	INFN					
Design						
Material Selection						
Production						
Cleaning						
Cryostat & cryogenics	INFN					
Design and material selection						
Construction						
Installation and test						
Shieldings	INFN					
Design and material selection						
Construction						
Underground Laboratory	INFN					
Design						
Installation						
Electronics	US					
Design and test						
Production						
Installation						
Data Acquisition	INFN					
R&D and prototyping						
Final design						
DAQ SW development						
Production						
Installation						
CUORE assembly	INFN/US					

CUORE site Hall A @ LNGS

CUORE construction

Ongoing activities:

- Underground Laboratory (hut) design, material selection and site preparation (2006: tenders, 2007: construction)
- Dilution refrigerator tender and final design (2006-2007: construction)
- Shieldings final design and material selection
- Best TeO₂ producer selection
- Germanium irradiation for NTD thermistor preparation
- Detector structure optimization for
 - lower background contribution
 - decoupling from setup vibrations
 - Better performance and reproducibility
 - Detector standardization
 - easier and Fast assembling procedure
- Front-end electronics prototypes
- and, to be preliminarly tested on CUORICINO
 - DAQ prototype
 - DAQ + online analysis software

CUORE hut

Summary

CUORICINO: 19st April 2003 \rightarrow

• successfully operating independent experiment on ¹³⁰Te $\beta\beta(0\nu)$

- ► 40.7 kg of TeO₂, $B_{\beta\beta(0\nu)} = 0.18 \pm 0.02 \text{ c/keV/kg/y}, \langle \Delta E \rangle = 8 \text{keV}$
- ► $\tau_{1/2} \ge 1.8 \times 10^{24}$ years at 90% C.L. ($\langle m_{\mu} \rangle \le 0.2 \div 1.1 \text{ eV}$)

S^{1o}_{3 years}
$$\geq$$
 6 × 10²⁴ years - $\langle m_{\nu} \rangle \leq$ 0.11 ÷ 0.60 eV

- good technical performance
 - reproducibility, stability, energy resolution
- crucial informations for background sources identification

CUORE:

- approved by LNGS S.C.: location in Hall A
- approved and funded by INFN
- intense activity for the optimization of the background reduction procedures
- construction phase started:
- start data taking: 1st January 2010