Esperimenti sul decadimento doppio beta

Maura Pavan

Dipartimento di Fisica

Università di Milano Bicocca e sez. INFN di Milano Bicocca

Milano, Italy

- doppio decadimento beta e proprietà del neutrino
- approcci sperimentali
- risultati attuali
- esperimenti in presa dati
- il futuro

Il doppio decadimento beta 2 neutrini: 2ν2β

~ 70 anni fa (Teoria di Fermi): canale a due neutrini 1935 M. Goeppert-Meyer
~ 15 anni fa (m_=0 E.W. Standard Model) è un decadimento permesso

esiste un insieme di nuclei (paripari) per cui il decadimento beta singolo è proibito e che decadono sull'isomero di massa minore tramite $2v2\beta$

Il doppio decadimento beta 2 neutrini: 2ν2β

Il processo non ha particolare rilevanza per lo studio dell'interazione debole, la sua peculiarità sta nella vita estremamente lunga degli isotopi e l'interesse per la misura sperimentale di tale vita è legato alla verifica delle previsioni teoriche: TEST DEI MODELLI NUCLEARI !!

Isotope	t 1/2 ²ⁿ (y) [measured]	t _{1/2} ²ⁿ (y)[calculated]
⁴⁸ Ca	(4.2 +2.1 -1.0) x 10 ¹⁹	$6 \times 10^{18} \cdot 5 \times 10^{20}$
⁷⁶ Ge	(1.42 ^{+0.09} -0.07) 10 ²¹	7 10 ¹⁹ - 6 10 ²²
⁸² Se	$(0.9 \pm 0.1) \times 10^{20}$	3 × 10 ¹⁸ - 6 × 10 ²¹
⁹⁶ Zr	(2.1 ^{+0.8} -0.4) 10 ¹⁹	³ x ^{10¹⁷- 6} x ^{10²⁰}
¹⁰⁰ Mo	$(8.0 \pm 0.7) \times 10^{18}$	1 10 ¹⁷ - 2 10 ²²
¹⁰⁰ Mo(0+*)	$(6.8 \pm 1.2) \times 10^{20}$	5 x 10 ¹⁹ - 2 x 10 ²¹
¹¹⁶ Cd	(3.3 ^{+0.4} _{-0.3}) 10 ¹⁹	3 x 10 ¹⁸ - 2 x 10 ²¹
¹²⁸ Te	$(2.5 \pm 0.4) \begin{array}{c} X \\ X \end{array} 10^{24}$	9 × 10 ²² - 3 × 10 ²⁵
¹³⁰ Te	$(0.9 \pm 0.15) \times 10^{21}$	2 x 10 ¹⁹ - 7 x 10 ²⁰
¹⁵⁰ Nd	(7.0 ± 1.7) X 10 ¹⁸	6 10 ¹⁶ - 4 10 ²⁰
²³⁸ U	$(2.0 \pm 0.6) \times 10^{21}$	X 1.2 10 ^{X9} 3

X X

Χ

Il doppio decadimento beta 0 neutrini ... IERI

~ 70 anni fa (Teoria di Fermi): canale 0 neutrini 1939 W. Furry suggerito come potente test per verificare se il v e' identico alla sua antiparticella

~ 15 anni fa (m = 0 E.W. Standard Model)

è un decadimento PROIBITO dallo S.M. (in cui v è una particella di Dirac a massa 0)

• richiede un meccanismo di cambio di elicità che è pensabile solo se il neutrino ha massa

• comporta una violazione del numero leptonico che è possibile solo se i neutrini sono particelle di Majorana

un "simpatico" esercizio per un teorico new physical di constructional estano new physical di construction de la più di constructional estano de la più di c

new physics beyond the Standard Model ?

Il doppio decadimento beta 0 neutrini OGGI ...

... il panorama è completamente cambiato

- SOLAR NEUTRINOS DATA (Sage, Gallex, SKamiokande, SNO)
- ATMOSPHERIC NEUTRINOS DATA (Macro, SKamiokande)
- REACTOR DATA (Kamland)

provano che

neutrinos oscillations are a reality

the Standard Model is not adequate

new physics beyond the Standard Model exists

OGGI sappiamo che ...

- esistono le oscillazioni, e quindi autostati di sapore $v_{e}v_{\mu}v_{\tau}e$ di massa $v_{1}v_{2}v_{3}$
- Ia fisica del neutrino è descritta da una matrice di mixing non diagonale :

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

possiamo misurare il valore di alcuni elementi della matrice di mixing

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2 + i\beta} \end{pmatrix}$$

• e i valori di Δm^2 $\nu_{\mu} \rightarrow \nu_{\tau} \Delta m^2_{23} \sim 2.10^{-3} \text{ eV}^2$ $\nu_e \rightarrow \nu_{\mu} \Delta m^2_{12} \sim 5.10^{-5} \text{ eV}^2$

ma NON sappiamo ...

- se il neutrino è una particella di Dirac o di Majorana
- quale è il valore assoluto delle masse

Decadimento	del trizio m _{ve} <2.3 eV	
Cosmologia	Σ <mark>m</mark> ,<~1 eV	
ββ(0ν)	<m<sub>v> < 0.3-0.8 eV</m<sub>	

Il doppio decadimento beta 0 neutrini OGGI ...

... è la via più facilmente percorribile per sapere se:

- il neutrino è una particella di Dirac
- quale è la gerarchia delle masse
- quale è la scala delle masse

 $\mathbf{m}_{ee} = \langle \mathbf{m}_{v} \rangle = \text{``massa di Majorana''}$ $= \left| \sum_{e i} |\mathbf{U}_{e i}|^{2} \mathbf{m}_{i} e^{i \alpha_{i}} \right|$

$$m_{ve} = \text{massa neutrino elettronico}$$
$$= \sqrt{\sum |U_{ei}|^2 m_i^2}$$

Search of AL=2 process to look for Majorana neutrinos

Matrix mass of Majorana neutrinos

$$\left| \begin{array}{ccc} \langle \mathbf{m}_{\mathbf{e}\mathbf{e}} \rangle & \langle \mathbf{m}_{\mathbf{e}\mu} \rangle & \langle \mathbf{m}_{\mathbf{e}\tau} \rangle \\ & \langle \mathbf{m}_{\mu\mu} \rangle & \langle \mathbf{m}_{\mu\tau} \rangle \\ & & \langle \mathbf{m}_{\tau\tau} \rangle \end{array} \right|$$

 $\begin{array}{ccc} \langle \mathbf{m}_{ee} \rangle & \text{Double beta decay} & (\mathbf{A}, \mathbf{Z}) \longrightarrow (\mathbf{A}, \mathbf{Z} + 2) + 2e^{-} \\ \langle \mathbf{m}_{e\mu} \rangle & \mu - e \text{ conversion} & \mu^{-} + (\mathbf{A}, \mathbf{Z}) \longrightarrow e^{+} + (\mathbf{A}, \mathbf{Z} - 2) \\ \langle \mathbf{m}_{\mu\mu} \rangle & \text{Tri-muons production} & \mathbf{v}_{\mu} \mathbf{N} \longrightarrow \mu \cdot \mu^{+} \mu^{+} \mathbf{X} \\ \langle \mathbf{m}_{e\tau} \rangle & \langle \mathbf{m}_{\tau\tau} \rangle & \begin{array}{c} \mathbf{K} \text{ rare decay} & \mathbf{K}^{+} \longrightarrow \pi^{-} \mu^{+} \mu^{+} \\ e^{\pm} \mathbf{p} \longrightarrow \mathbf{v}_{e} \mathbf{l}^{\pm} \mathbf{l}^{\pm} \mathbf{X} & \text{with } \mathbf{ll}^{+} = (e\tau), (\mu\tau), (\mu\mu), (\tau\tau)) \\ \hline \mathbf{Limits} \\ \left(\begin{array}{c} 10^{-10} & 1.710^{-2} & 4.210^{3} \\ 500 & 4.410^{3} \\ 2.010^{4} \end{array} \right) & \begin{array}{c} \text{GeV} \end{array}$

Experimentally, the $\beta\beta(0\nu)$ decay is the most sensitive physical

process to search $\Delta L=2$ and Majorana neutrino

F. Piquemal (CENBG)

CS IN2P3 2005/03/05

$0\sqrt{2\beta}$ e le proprietà del neutrino

 $0v2\beta$ vita media:

$$T_{\frac{1}{2}} = \frac{1}{G(Q,Z) |M_{nucl}|^2 < m_n^2}$$

dove:

- G(Q,Z) = spazio delle fasi
- <m >² = massa di Majorana
- M_{nucl}² matrice nucleare

theoretically evaluated (shell model, QRPA models ...) different results according to the nuclear model used important to extract from the measured (limit) lifetime the value (limit) of $< m_v >$ exp. measurement to fix paremeters of nuclear models are planned for the future

0ν**2**β punto di vista sperimentale

 $S_{1/2}^{0v} = 0n$ - sensitivity = vita di dimezzamento corrispondente al minimo numero do eventi rivelabili al di sopra del fondo a un determinato C.L.

028 due differenti techniche

Source = Detector

(calorimetric technique)

- + high energy resolution
- no event topology

Source ≠ Detector + event shape reconstruction

- low energy resolution

advantages:

easy to reach a high N_{$\beta\beta$} (=> large masses) generally with high resolution detectors no background from $2\nu 2\beta$ event good knowledge of background sources

disadvantages:

no or little possibility to reject background constraints on detector material

advantages:

wider choice of sources different sources in the same apparatus clear reconstruction of event topology high efficiency in background rejection good knowledge of background sources

disadvantages:

complicate apparatus growing in mass ($N_{\beta\beta}$) is not straightforward poor energy resolution bkg from $2\nu 2\beta$ event can be a limiting factor

0v2β present experiments

a comparison between the different experiments requires to extract from the lower limit for τ an upper limit for \mathbf{m}_{v}

$$\langle \mathbf{m}_{v} \rangle^{2} = \frac{1}{\mathbf{G}(\mathbf{Q},\mathbf{Z}) |\mathbf{M}_{nucl}|^{2} \tau}$$

this is not straightforward, indeed uncertainties on theoretical evaluations of $[M_{nucl}]^2$ span one order of magnitude at least

Experiment	Isotope	τ _{1/2} >	range <m></m>
		[y]	[eV]
Heidelberg Moscow 2001	⁷⁶ Ge	1.9 10 ²⁵	0.3-2.5
IGEX 2002	⁷⁶ Ge	1.57 10 ²⁵	0.3-2.5
Cuoricino 2005	¹³⁰ Te	2 10 ²⁴	0.3-0.7
NEMO 2005	¹⁰⁰ Mo	4.6 10 ²³	0.6-1.0
Bernatowicz et al. 1993	¹²⁸ Te	7.7 10 ²⁴	1.0-4.4
Belli et al. 2003	¹³⁶ Xe	1.2 10 ²⁴	0.8-2.4
Bizzetti et al. 2003	^{116}Cd	1.7 10 ²³	1.6-5.5
Ejiri et al. 2001	¹⁰⁰ Mo	5.5 10 ²²	1.4-256
Osawa I. et al. 2002	⁴⁸ Ca	1.8 10 ²²	

claimed evidence only by a part of the collaboration

started in 2003

⁷⁶Ge: the Heidelberg-Moscow experiment

```
Data sheet
```

source=detector experiment

• tech. suggested in '60 by E. Fiorini,

dominating this field since now

• exp. started in 1990

detector = 5 Ge diodes

source = 10.9 kg diodes

enriched in ⁷⁶Ge (i.a. 86%)

Q - value = 2039 keV

Location = Lab. Naz. del Gran Sasso - Italy Countries = Germania + Russia

statistics= 53.9 kg y, with PSA = 35.5 kg y

performances =

4.2 keV FWHM resolution at DBD Q-value background in 0v2β region = 0.19±0.01 c/keV/kg/y 0.06±0.01 c/keV/kg/y with PSA Pulse Shape Analysis, used to identify and reject multi-site events (gamma background)

⁷⁶Ge: the Heidelberg-Moscow experiment

accurate background model based on MC simulations and direct measurements of the contaminations of the different parts of the exp. apparatus, this allow to extract the 2v half-life

$T_{1/2}^{2v} > (1.55 \pm 0.01(stat) +0.19_{-0.15} (syst)) \times 10^{21}$

⁷⁶Ge: the Heidelberg-Moscow experiment

later a re-analysis by part of the collaboration (4 authors): "Evidence for Neutrinoless DBD"

Klapdor-Kleingrothaus et al. Mod. Phys. Lett. A 16 (2001) 2049 $\tau_{1/2}^{0n}$ = (0.8 - 18.3) 10²⁵ y at 90% C.L. <m_> = 0.11 - 0.56 eV

the way in which the re-analysis was done has been hardly criticised

Aalseth et al. Mod. Phys. Lett. A 17 (2002) 1475, Feruglio et al. Nucl. Phys. B 637 (2002) 345, Zdesenko at al. Phys. Lett. B 546 (2002) 206) independent reply by two authors ...

the debate can last for ever ... or until the next generation Ge experiments

¹³⁰ Te: Cuoricino

Data sheet

Location = Lab. Naz. del Gran Sasso - Italy Countries = Italia + Spagna + Stati Uniti

source=detector experiment

- tech. suggested in 1985 by E. Fiorini and T.O. Niinikoski
- first experiment in 1997
- with Cuoricino international collaboration

detector = array of 62 **TeO**, bolometers

• 44 big (790 g) + 18 small (330 g) crystals

source ~ 40 kg natural TeO₂ (130 Te i.a. 33.8 % =>~ 11 kg 130 Te)

Q-value ~ 2530 keV

Statistics ~ 6 kg (¹³⁰Te) y - started April 2003 performances = ~ 8 keV FWHM at DBD Q-value bkg in $0v2\beta$ region = 0.18 ± 0.01 c/keV/kg/y

¹³⁰ Te: Cuoricino NOW

Cuoricino within 3 years

- 3 years real time (waiting for CUORE)
- 60% bkg live time
- improve the present statistics from 6 to 25 kg (¹³⁰Te) y
- the limit improves as the sqr of the statistics => we gain a factor 2 on the half-life

¹⁰⁰Mo, ... : NEMO-3

Data sheet

location = M odane Underground Laboratory

(Frejus) - France

source≠detector experiment

• 3thd generation exp

• study of both $2\nu 2\beta$ and $0\nu 2\beta$

detector = Tracking detector He+alcohol+Ar (6180 drift wire chambers operated in Geiger mode)

Calorimeter

(1940 plastic scintillators + PMTs)

magnetic field B=25 G

SOURCES = 20 m²

total mass ~ 10 kg Mo^{100}, Se^{82} $0v2\beta$ Te^{130}, Cd^{116} $Zr^{96}, Ca^{48}, Nd^{150}$ $2v2\beta$ performances and background = track reconstruction energy resolution $\sigma_E \ge -3\%$ at 3 MeV background in $0v2\beta$ region = high efficiency in bkg rejection bkg due to the $2v2\beta$ is a limiting factor due to the poor en. res. (25 G)

NEMO-3: ¹⁰⁰Mo RESULTS

NEMO-3: ¹⁰⁰Mo and ⁸²Se sensitivity year 2008-2009

 $T_{1/2}^{0}$ > 4 10²⁴ y $T^{0}_{1/2}$ > 0.8 10²⁴ y ⁸²Se ¹⁰⁰Mo <m_v> < 0.2 - 0.35 eV (90% C.L.) <m,> < 0.65 – 1.8 eV (90% C.L.)

The Future of Double Beta Decay

Experiment	Author	Isotope	Detector description	T ^{5y} _{1/2} (y)	<m<sub>v>*</m<sub>
COBRA	Zuber 2001	¹³⁰ Te	10 kg CdTe semiconductors	1 x 10 ²⁴	0.71
CUORE	Arnaboldi et al. 2001	¹³⁰ Te	760 kg of TeO ₂ bolometers	7 x 10 ²⁶	0.027
EXO		¹³⁶ X e	1 t enriched Xe TPC	8 x 10 ²⁶	0.052
GEM	Zdesenko et al 2001 Klapdor-	⁷⁶ G e	1 t enriched Ge diodes in liquid nitrogen + water shield	7 x 10 ²⁷	0.018
GENIUS	Kleingrothaus et al 2001	⁷⁶ Ge	1 t enriched Ge diodes in liquid nitrogen	1 x 10 ²⁸	0.015
MAJORANA	Aalseth et al 2002	⁷⁶ G e	0.5 t enriched Ge segmented diodes	4 x 10 ²⁷	0.025
DCBA	Ishihara et al 2000	¹⁵⁰ N d	20 kg enriched Nd layers with tracking	2 x 10 ²⁵	0.035
CAMEO	Bellini et al 2001	¹¹⁶ Cd	1 t CdWO₄ crystals in liquid scintillator	> 10 ²⁶	0.069
CANDLES	Kishimoto et al	⁴⁸ Ca	several tons of CaF ₂ crystal in liquid scintillator	1 x 10 ²⁶	
GSO	Danevich 2001	¹⁶⁰ G d	2 t Gd_2SIO_5 :Ce cristal scintillator in liquid	2 x 10 ²⁶	0.065
MOON	Ejiri et al 2000	¹⁰⁰ M o	34 t natural Mo sheets between plastic scintillator	1 x 10 ²⁷	0.036
Хе	Caccianiga et al 2001	¹³⁶ X e	1.56 t of enriched Xe in liquid scintillator	5 x 10 ²⁶	0.066
XMASS	Moriyama et al 2001	¹³⁶ X e	10 t of liquid Xe	3 x 10 ²⁶	0.086

* using nuclear calculations of Staudt et al. Europhys. Lett 13 (1990) 31

⁷⁶ Ge: GERDA

FASE I : test "Klapdor claim" FASE II :<m,> ~ 10 - 30 meV

Italia-Russia-Germania-Polonia Laboratori Nazionali del Gran Sasso

Parte dall'esperienza di IGEX e HM con l'idea di ridurre a ~0 il fondo esterno

e controllare molto bene quello intrinseco (⁶⁰Co e ⁶⁸Ge).

IL GOAL E' => passare da 0.1 c/(keV kg y) a 0.001 c/(keV kg y) FATTORE 100 !!!

Modello fondo esp. Heidelberg Moscow

contributi esterni:

- *contaminazioni radioattive* dei materiali di costruzione (cemento/roccia ...) e in particolare 2.615 MeV from ²⁰⁸Tl
- *neutroni* da reazioni (alpha,n) & fissione in cemento/roccia e da reazioni indotte dai mu

contributi interni (nel Ge)

• *attivazione cosmogenica* a livello del mare, particolarmente rilevante per gli isotopi ⁶⁸Ge e ⁶⁰Co con vite medie ~ anno(i)

⁷⁶ Ge: GERDA

LNGS - hall A

- array di HPGe immersi in LN/LAr
- il Ge deve essere arricchito !!
- il tutto circondato da acqua

FASE I (start 2007)

15-20 kg existing ⁷⁶Ge detectors intrinsic bkg may dominate

assume 0.01 cts/(keV kg y) assume FWHM resolution = 3.6 keV $N_{bkg} \sim 0.5$ counts for 15 kg y

Klapdor-K.: 28.8±6.9 events in 71.7 kg y

expect 6.0±1.4 cts above bkg of 0.5 for < 1 evt: signal excluded @ 98% CL

FASE II

buy 30 kg enriched material produced 20 kg segmented detectors

verify bkg index 0.001 cts/(keV kg y) (GOAL) statistics 3y * 35 kg ~ 100 kg y $< m_v > ~ 10 - 30 \text{ meV}$

¹³⁰ Te: CUORE

Italia-Spagna-Stati Uniti Laboratori Nazionali del Gran Sasso

GOAL: $\langle m_{y} \rangle \sim 30 \text{ meV}$

ryogenic Underground Observatory for Rare Events

Parte dall'esperienza di MiDBD e Cuoricino.

Il modello del bkg di Cuoricino considera: ~ 0 il fondo intrinseco di bulk dei rivelatori dominante il fondo dovuto alle contam. superficiali dei materiali facilmente controllabile il fondo esterno.

IL GOAL E'

passare da 0.1 c/(keV kg y)

a meno di 0.01 c/(keV kg y)

FATTORE > 10 !!!

4 detector/module

LNGS - hall A

- array di 988 bolometri di TeO,
- nessuna richiesta di arricchimento
- 19 torri 13 moduli/torre 4 rivelatori/modulo
- specially designed cryostat, at 10 mK

massa totale ~ 740 kg TeO₂ = 200 kg 130 Te

status: partially funded – space assigned

CUORICINO is one of the 25 towers of CUORE

⁷⁶ Ge: <u>Majorana</u> Stati Uniti – Canada – Giappone - Russia Sudbury ???

GOAL: $\langle m_{v} \rangle \sim 30 \text{ meV}$

Laboratorio da definirsi

- array di HPGe segmentati, 57 cristalli/modulo,
- 3 strati da 19 cristalli
- il Ge deve essere arricchito !!
- schermatura "tradizionale" Pb+Cu+n shield and active veto

SuperNEMO preliminary design

Plane geometry

Source (40 mg/cm²) 12m²racking volume (~3000 channels) calorimeter (~1000 PMT)

Modular (~5 kg of enriched isotope/module)

100 kg: 20 modules

~ 60 000 channels for drift chamber

Side view

F. Piquemal (CENBG)

CS IN2P3 2005/03/05

Conclusioni

- ~ 10/15 anni fa la ricerca del DBD era un "esperimento di nicchia", non si vedevano forti ragioni per dover credere all'esistenza di neutrini massivi
- oggi il DBD ha un ruolo centrale nella fisica del neutrino grazie alla sua possibilità di accedere a informazioni quali la scala delle masse e il carattere di Majorana del neutrino
- prova del ruolo centrale giocato dal DBD è la numerosità degli esperimenti proposti per il futuro
- curiosamente i due esperimenti più avanti in fase di realizzazione saranno in Italia, ai LNGS: sono CUORE e GERDA (e ancora più curiosamente la tecnica utilizzata da entrambi e' stata suggerita da un italiano)
- è ragionevole pensare che nel giro di ~ 5 anni sapremo se la gerarchia è diretta o inversa !!