CUORICINO results and

CUORE R & D

Fabio Bellini

Università di Roma “La Sapienza” & INFN Roma
on behalf of the
CUORE Collaboration

21st International Workshop on Weak Interactions and Neutrinos
Kolkata, India Jan. 15-20, 2007
Neutrino-less Double Beta Decay

The standard lore: light Majorana neutrino exchange

\[\text{chirality flip: } m_\nu \neq 0 \]
\[\nu_{\text{majorana}}: \nu \equiv \bar{\nu} \]
\[(\text{Lepton number violation}) \]

If observed:

Proof of Majorana nature of Neutrino

\[\left(\tau_{1/2}^{0\nu\beta\beta} \right)^{-1} = G(Q, Z) |M_{\text{nucl}}|^2 |m_{\beta\beta}|^2 \]
\[m_{\beta\beta} = \sum m_{\nu_k} U_{ek}^2 \]

Schetcher, Valle *Phys. Rev. D25 2951 1982*
Does 0νββ measure the mass?

\[m_{\beta\beta} = \sum m_{\nu_k} U_{ek}^2 = \cos^2 \theta_{13} (m_1 \cos^2 \theta_{12} + m_2 e^{2i\alpha} \sin^2 \theta_{12}) + m_3 e^{2i\beta} \sin^2 \theta_{13} \]

Strumia, Vissani hep/ph 0606054

Degenerate and inverted hierarchy testable by “realistic” experiments
The 0νββ elements shall have:

\[(\tau_{1/2}^{0\nu\beta\beta})^{-1} = G(Q, Z) |M_{nucl}|^2 |m_{\beta\beta}|^2 \]

- A large Q
 - because rate \(\propto Q^5 \)
 - because the natural \(\gamma \)-lines end around 2.6 MeV \(^{208}\text{Tl} \) from \(^{232}\text{Th} \)

- A large matrix element

- A large isotopic abundance

- Should be \((A-Z)\) even-even nuclei: 2νββ suppressed

\[^{48}\text{Ca}, ^{76}\text{Ge}, ^{82}\text{Se}, ^{100}\text{Mo}, ^{116}\text{Cd}, ^{130}\text{Te}, ^{136}\text{Xe}, ^{150}\text{Nd} \]
2νββ background-ΔE

Reducible bkg will accumulate proportionally to the window dictated by energy resolution. You can always hope to reduce the background and alleviate the problem.

Irreducible background however cannot be reduced; 2νββ tail will always be there.

\[\delta = \frac{\Delta E_{FWHM}}{Q_{ββ}} \]

\[\frac{S}{B} \approx \frac{m_e}{7Q_{ββ}} \delta^6 \frac{T_{2ν}^2}{T_{1/2}^{0ν}} \]

Please note \[\delta^6 \]

\[T_{0ν} \approx 10^{28} \text{y} \quad S/B = 1 \]

\[T_{2ν} \approx 10^{20} \text{y} \quad Q \approx 3 \text{MeV} \]

\[\delta = \frac{\Delta E_{FWHM}}{Q} \approx 2.5\% \]
The less noble background

- Internal to source
 - Primordials (^{238}U, ^{232}Th, ^{40}K)
 - Cosmogenic activation

- External to source
 - Cosmic rays
 - Neutrons
 - Primordials in surrounding materials

- Detector specific

- Bkg estimate and reduction: hard (few counts/y): intermediate size experiment often required

On the back of the envelope

$\tau_{1/2}^{0\nu} = \ln2 \cdot a \cdot N_a \cdot M \cdot T / N_{\beta\beta} \quad (\tau_{1/2}^{0\nu} \gg T)$

50 meV $m_{\beta\beta}$ implies half lifes $\sim 10^{26-27}$ y: 1 event/y $\Rightarrow 10^3$ isotope moles $\Rightarrow O(100\text{kg})$

now you can only loose: nat. abundance, efficiency, background....
Two techniques

Source \subseteq detector

- M, ΔE, ε
- Topology, bkg

- 76Ge diodes (MAJORANA, GERDA)
- 130Te bolometers (CUORE)
- 48Ca, 116Cd, 160Gd, 136Xe scintillators (EXO)

Source \neq detector

- Bkg topology, different isotopes
- M, ΔE, ε

- Tracking chamber: 82Se, 100Mo, 96Zr (NEMO, MOON)
CUORICINO: the bolometric way

(Very) Low temperature homogeneous calorimeter:

- basic physics of Bolometry: \(\Delta T = \frac{E}{C} \)
 \[\Rightarrow \text{low } C \]
- diamagnetic dielectrics @ low \(T_0 \) (~ 10mK):
 \[C \sim (T/\Theta_D)^3 \sim 2 \text{ nJ/K} \sim 10^{10} \text{eV/K} \]
 \[G \sim 4 \text{ nW/K} \]

Thermometer: NTD Ge thermistor

\[R \sim R^0 \exp(T^0/T)^{-0.5} \]
\[\Delta T \Rightarrow \Delta R \]
\[\Rightarrow 0.1 \text{ mK/MeV} \Rightarrow 0.1 \text{mV/MeV} \]

Bonus: no intrinsic limit to \(\sigma(E) \)

\[\sigma(E) = (K_BT^2)^{0.5} \sim 10 \text{ eV} \]

(Not for all) Typical pulse decay time: \(t \sim C/G \sim 10^{2-3} \text{ ms} \)
Why Tellurium?

- Active isotope: 130Te

- Transition energy
 $$Q_{\beta\beta} = (2530.30 \pm 1.99) \text{ keV}$$

 Nuclear Physics A 729 (2003) 337

Natural abundance

33.9% \Rightarrow low cost

Nuclear matrix element

- Absorber material: TeO$_2$
 - Low heat capacity
 - Possibility to grow large crystals
 - Good intrinsic purity

Between the highest natural γ line (208Tl) and Compton edge
CUOR(ICINO) @ LNGS

Cuoricino experiment is installed in the Underground National Laboratory of Gran Sasso, L’Aquila – ITALY. The mountain providing a 3500 m.w.e. shield against cosmic rays.

CUORE (hall A)

Cuoricino

R&D final tests for CUORE (hall C)
CUORICINO: the demonstrator

11 modules: 4 detector 5x5x5 cm³ = 790 g each

2 modules 9 detector 3x3x6 cm³ = 330 g each

4 enriched: 2 @ 75% 130Te
2 @ 82.3% 128Te

Total Active mass:
- TeO_2 = 40.7 kg
- ^{130}Te = 11.34 kg

Started on April 2003

Faraday cage
Anti-Radon box
neutron shield

External Pb shield
Roman lead shield

He liquifier

Vacuum pumps
Calibration spectra: energy resolution

Sum calibration spectra

- **FWHM @ 2615 keV \(^{208}\)Tl \(\gamma\)-line**
 - 5x5x5 cm\(^3\) crystal: FWHM 7.5±2.9 keV
 - 3x3x6 cm\(^3\) crystal: FWHM 9.6±3.5 keV

- \(^{232}\)Th \(\gamma\)-source external to the cryostat: 3 days measurement every month
CUORICINO 0νββ result

- Total statistics: 8.38 kg 130Te•y
- Bkg (ββ0ν region):
 0.18 ± 0.01 counts/keV/kg/y
- FWHM measured on bkg spectrum
 @ 2.6 MeV ~ 8 keV
- Detector efficiency: $\sim 86.4\%$
- ML fit in 2475-2550 keV region
 - flat bkg + 2505 keV peak
 - peak shape = N-gaussian
 to account for the different – measured - energy resolutions
 - best fit yields negative effect

$$\tau_{1/2}^{0ν\beta\beta} > 2.4 \cdot 10^{24} \text{ y} @ 90 \text{C.L.} \implies \langle m_{\beta\beta} \rangle < [0.18 \div 0.94] \text{ eV}$$

$\langle m \rangle$ range from various QRPA calculations: Rodin, Faessler, Simkovic, & Vogel Nucl. Phys. A 766 107 (2006)
Staudt, Kuo & Klapdor-Kleingrothaus, PRC 46 871 (1992)
In the parameter space

KK: $0.24 \, eV < m_{\beta\beta} < 0.58 \, eV \iff m_{\beta\beta}^{\text{best}} = 0.44 \, eV$

CUORICINO:

$m_{\beta\beta} < [0.18 - 0.94] \, eV$

With 3 years live time:

$\tau_{1/2}^{0\nu\beta\beta} > 5.4 \cdot 10^{24} \, y \, @ \, 90 \, C.L.$

$\left\langle m_{\beta\beta} \right\rangle < [0.11 \div 0.63] \, eV$

m range from various QRPA calculations:

Staudt, Kuo & Klapdor-Kleingrothaus, PRC 46 871 (1992)
The Moore's Law of Bolometry

Mass [kg]

10000,00
1000,00
100,00
10,00
1,00
0,10
0,01

Year

Mibeta
4 detectors array

CUORE

73 g
340 g
Cryogenic Underground Observatory

Single dilution refrigerator ~10 mk

for Rare Events

• $\beta\beta 0\nu$, Cold Dark Matter, Axion searches
 proposal hep/ph 0501010

Closed packed array of 988 TeO_2 5x5x5 cm3 crystals $\Rightarrow 741 \text{ kg TeO}_2 \Rightarrow 204\text{ kg }^{130}\text{Te}$
CUORE Housing

Basement already completed ... the rest is coming
CUORE sensitivity

CUORE 0νββ sensitivity will depend strongly on the bkg level and detector performance.

1st generation exp: proof of technology
2nd generation exp: explore inverted hierarchy

CUORE GOAL:
- test inverse hierarchy: 19-50 meV

Projected sensitivity of CUORE (1σ)

Spread due to NME uncertainties: main obstacle to answer ν mass question
CUORICINO bkg in the $0\nu\beta\beta$ region

- All lines identified all over the whole spectrum: U & Th chains, ^{40}K, ^{207}Bi, ^{60}Co

- In $0\nu\beta\beta$ region:
 - $30 \pm 10\%$ ^{208}Tl (2614.5 keV line) via multi-Compton events from ^{232}Th in cryostat shields
 - $10 \pm 5\%$ from crystals surface ^{238}U and ^{232}Th contamination
 - $50 \pm 20\%$ from degraded α produced by ^{238}U and ^{232}Th contaminations of mounting structure
 main candidate the copper surface
 - negligible contribution from 2505 (1173γ+1332γ) keV ^{60}Co tail due Cu cosmogenic activation

^{60}Co

$Q_{\beta\beta} = (2530.30 \pm 1.99) \text{ keV}$

^{208}Tl

$0.18 \pm 0.01 \text{ counts/keV/kg/y}$

^{214}Bi
Background reduction

- Cryostat 232Th bulk contamination contribution reduced by properly shielding in CUORE cryostat
 + selection of construction materials: $\text{bkg} = < 10^{-3} \text{ c/keV/kg/y}$
- Cosmogenic Cu and Te activation reduced by underground storage of materials
- Surface contribution:
 - test with new crystals surface cleaning (etching, lapping with 2μm SiO$_2$ clean powder)
 reduction of a factor 4
 - test with new Cu cleaning (etching, electro-polishing, passivation) and
 complete coverage of Cu facing the crystal with ~50μm PET film
 reduction of ~40% of flat continuum background

Hall C cryostat has different shields than CUORICINO resulting in higher rates < 2.6 MeV. Possible to study α bkg only.
The extrapolated contribution to CUORE are

- **Crystal Surface contamination contribution** \(<3 \cdot 10^{-3} \text{ counts/keV/kg/y}\)
- **Copper Surface contamination contribution** \(<5 \cdot 10^{-2} \text{ counts/keV/kg/y}\)
- **New structure with reduced Cu amount** is being tested right now
 - **MC simulation Cu contribution** \(< 2.5 \cdot 10^{-2} \text{ counts/keV/kg/y}\)

still a factor no less than 2.5 to go

New passive procedure (plasma cleaning) under test

most exp. efforts now concentrated in the reduction of surface impurities

alternative viable way:

adopt a smarter, yet more complex, bkg recejction system:

Surface Sensitive Bolometers
CUORE R&D: active bkg rejection

Surface sensitive detectors: composite bolometer with a thin Ge, Si, TeO$_2$ crystal

Thin shield Bolometer and its thermistor

TeO$_2$ Bolometer

classic pulse

fast and high pulse

![Graph showing pulse amplitude vs. rise time]
Conclusion

- **Dirac or Majorana** neutrino nature is a fundamental question that needs to be answered at (almost) all cost(s)
- **Neutrino-less DBD** might be the sole chance to give a measure of neutrino mass

- **CUORICINO:**
 - The most sensitive $0\nu\beta\beta$ decay running experiment:
 \[\tau_{1/2}^{0\nu\beta\beta} > 2.4 \cdot 10^{24} \text{ y @ 90 C.L.} \Rightarrow \langle m_{\beta\beta} \rangle < [0.18 \div 0.94] \text{ eV} \]
 - Good chances to confirm Klapdor-Kleingrothaus claim
 - CUORICINO proved the feasibility of CUORE
 - Crucial informations for background identification

- **CUORE:**
 - Hut construction already started
 - Intense R&D activity to reduce background and optimize construction
 - Enrichment or alternative options (^{48}Ca, ^{100}Mo, ^{116}Cd, ^{150}Nd) still open
CUORE Collaboration

Università di Milano-Bicocca - INFN Sez. di Milano
C. Arnaboldi, C. Brofferio,
S. Capelli, L. Carbone, M. Clemenza, O. Cremonesi,
E. Fiorini, C. Nones, A. Nucciotti, M. Pavan,
G. Pessina, S. Pirro, E. Previtali, M. Sisti, L. Torres,
L. Zanotti

Politecnico di Milano
R. Ardito, G. Maier

Laboratori Nazionali del Gran Sasso
M. Balata, C. Bucci, S. Nisi, C. Zarra

Università di Firenze e INFN, Firenze
M. Barucci, L. Risegari, G. Ventura

University of Zaragoza
S. Cebrian, P. Gorla, I.G. Irastorza

Università degli Studi dell’Insubria, Como
A. Giuliani, M. Pedretti, S. Sangiorgio

Università di Genova
S. Cuneo, S. Di Domizio, A. Giachero, E. Guardincerri,
M. Olcese, P. Ottonello, M. Pallavicini

Laboratori Nazionali di Legnaro
V. Palmieri

Università di Roma
F. Bellini, C. Cosmelli, I. Dafinei, M. Diemoz, F. Ferroni,
C. Gargiulo, E. Longo, S. Morganti, M. Vignati

University of California at Berkeley
S.J. Freedman,
Yu.G. Kolomensky, E.E. Haller

University of South Carolina
F.T. Avignone III, I. Bandac, R. J. Creswick,
H.A. Farach, C. Martinez, C. Rosenfeld

Lawrence Berkeley National Laboratory
J.W. Beeman, A.R. Smith, N. Xu

Lawrence Livermore National Laboratory
M.J. Dolinski, E.B. Norman

University of California, Los Angeles
H. Huang, C. Whitten Jr.

University of Wisconsin, Madison
K.M. Heeger, R.H. Maruyama

California Polytechnic State University
T.D. Gutierrez

Università di Milano-Celoria - INFN Sez. di Milano
F. Alessandria
neutron & \(\gamma \) background

- **External neutron flux:**
 \[\Phi = 3.7 \times 10^{-6} \text{n/s/cm}^2 \]
 (measurement E<10MeV + \(\mu \)-induced neutrons simulation in the rock)
 Total anti-coincidence \(\text{bkg} \sim 10^{-5} \) counts/keV/kg/y

- **Muon-induced neutrons in the shieldings**
 \[\Phi = (3.2 \pm 0.2) \times 10^{-4} \text{\(\mu \)/s/m}^2 \]
 induced neutron flux on detector \(\Phi \sim 10^{-7} \text{n/s/cm}^2 \)
 total anti-coincidence \(\text{bkg} = (3.0 \pm 0.3) \times 10^{-4} \) counts/keV/kg/y

- **External radiation:**
 \[\Phi = 7.7 \times 10^6 \gamma / \text{d/cm}^2 \]
 measured with Ge detector
 \(\text{bkg} = 1.5 \times 10^{-5} \) counts/kg/keV/y with 24 cm external Pb shield

- **External Pb shield contamination:**
 \(100 \mu \text{Bq/kg} \)
 \(\text{bkg} = 2.4 \times 10^{-4} \) counts/keV/kg/y

- **Internal shield**
 - **Roman lead contamination (6cm Pb):**
 \[60 \pm 17 \mu \text{Bq/kg} \]
 \(\text{bkg} = 6 \times 10^{-3} \) counts/keV/kg/y
 - **DownRun Pb**
 \[<22 \mu \text{Bq/kg} \]
 \(\text{bkg} < 2 \times 10^{-3} \) counts/keV/kg/y
 (but \(^{60}\text{Co} \) contamination & 27 Bq/kg \(^{210}\text{Pb} \))

- **Cu shield contamination:**
 \[<12 \mu \text{Bq} \]
 \(\text{bkg} < 2.4 \times 10^{-3} \) counts/keV/kg/y
 (better for Th contamination.. worse for \(^{60}\text{Co} \) contamination and neutron activation)