Fisica Nucleare e Subnucleare

Lezioni n. 44 e 45

- Rivelazione di neutrini astrofisici di energia estrema: $E_v > 10^{17} \text{ eV}$
 - rivelazione "acustica" (in acqua e/o in ghiaccio)
 - rivelazione "radio" (per sciami atmosferici, nel ghiaccio, in miniere di sale)

1

Outline

Cosmic Neutrinos Astrophysics

- Neutrino Astronomy
- Neutrino Production
- GZKv
- Flux Limits

Detection Techniques

- [Optical Cherenkov]
- Radio Cherenkov
- Radio (EAS)
- Acoustical

- Detection principles
- Tests & Experiments
- Future Developments

Neutrino - Astronomy

UHEv's Production

- Acceleration (*bottom-up* model)
- X-particles Annihilation (*top-down* model)

Astrophysics

 $\mathsf{E}\mathsf{H}\mathsf{E}\mathsf{C}\nu\mathsf{'}\mathsf{s}$ as a diagnostic of astrophysical processes

(sources, acceleration engines, propagation...)

• Particle Physics beyond the Standard Model

($\sigma_{\nu N}$, strongly interacting <code>v's...)</code>

• Cosmology EHEC absorption on the CvB

(resonant annihilation of EHECv with relic \underline{v} into Z-bosons)

<u>BUT</u>

A huge target volume is needed (~ km3)
Signal to noise should be optimized

UHEv's production: Acceleration (*bottom-up* model)

Fermi Engine

- *p*'s, confined by magnetic fields, accelerated through repeated scattering by plasma shock fronts
- production of π 's and *n*'s through collisions of the trapped *p*'s with ambient plasma produces γ 's, *v*'s and CR's

GZK Neutrinos

- Neither origin nor acceleration mechanism known for cosmic rays above 10¹⁹ eV
- A paradox:
 - No <u>nearby</u> sources observed
 - distant sources <u>excluded</u> due to GZK process
- Neutrinos at 10¹⁷⁻¹⁹ eV required by standard-model physics through the GZK process:

observing them is crucial to **resolving the GZK paradox**

The Z-burst model

• Original idea, proposed as a method of Big-bang relic neutrino detection via **resonant annihilation** (T. Weiler, D. Fargion):

 $10^{23} \text{ eV } \nu + 1.9 \text{K} \underline{\nu} \rightarrow Z_0$

produces a dip in a cosmic neutrino source spectrum, *IF one has a source of 10*²³ *eV neutrinos*

• More recently: Z₀ decay into hadron secondaries gives 10²⁰⁺ eV protons to explain any super-GZK particles, again *IF there is an appropriate source of neutrinos at super-mega-GZK energies*

The Z-burst proposal has the virtue of solving two completely unrelated (and very difficult) problems at once: **relic neutrino detection** AND **super-GZK cosmic rays**

Event Rates & Detection Techniques

- Predicted neutrino fluxes are very LOW
 Cubic kilometer scale detectors required
 → NATURAL TARGET (ice, water, rock ...)
 - Optical neutrino detectors
 - Light attenuation (60m) limits the effective volume

- Need a detector with a100% duty cycle.
- Need attenuation lengths of scale O(1km)

High Energy Neutrino Detection

Detection Techniques & Target Media

- Optical Cherenkov (water, ice)
- Radio Cherenkov (ice, salt, sand)
- Radio Geosynchr. Effect

Acoustical

(EAS →atmosphere) (water, ice, salt)

Neutrino Interactions \rightarrow Simulation

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

Neutrino Interactions

$$\nu + N \rightarrow / \pm + X (CC)$$

 $\nu + N \rightarrow \nu + X (NC)$

& Neutrino Detection

- Lepton Track (μ , [τ]) \rightarrow Cherenkov Light Emission
- Hadronic (X) + E.M (e^{\pm}) Cascade \rightarrow Acoust. Signal
- E.M. Cascade \rightarrow Charge Excess \rightarrow Radio Signal

The Askaryan Effect

- Proposed by G. Askaryan, 1962
 - High-energy neutrino interacts in a solid dielectric
 - Net charge excess develops in e- γ shower
 - Charge excess moving at speed of light in vacuum
 - → Cherenkov radiation results
- The key: Cherenkov radiation is coherent for wavelengths larger than shower bunch size:
 - $\lambda >>$ shower dimensions
 - For sand, salt and ice, coherent at frequency f < 1-10 GHz

The Askaryan Effect

The Target

- ICE \rightarrow Antarctic icecap (RICE, ANITA);
 - Possible co-detection with IceCube
 - Large volume seen with ANITA
- **SAND** \rightarrow Lunar regolith (GLUE, others)

Showers visible from radio telescopes at E>10 EeV

- SALT → Salt domes (SALSA, ZESANA, SND ...)
 - Easily accessible
 - No terrestrial radio interference

Simulation & Development

A simple model that relates medium properties with Cherenkov radio-emission is needed

Radio Cherenkov Detection Lab Test Radio Signals from Photon Beams in Sand and Salt

- Equivalent bunch energy from 10¹⁵ to 10¹⁹ eV

(SLAC, 2000-2002)

- Coherence observed over many decades in energy, frequencies from ~0.5 to 14 GHz
- Askaryan effect has been observed directly in sand

Radio Signals from Photon Beams in Sand and Salt (SLAC, 2000-2002)

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

Results

Lezioni n

SALT Domes

'08

- Rock salt is free from liquid and gas permeation
 - \rightarrow Homogeneity
 - \rightarrow Good radio wave transparency

(Evaporate beds have high impurity content: water inclusions, beds of clay, silt, anhydrite,...)

- Covered soil prevents surface radio waves to penetrate
 - (Penetrating CRs underground are too spatially disperse to generate coherent Cherenkov emission)

SALSA → Salt-dome Shower ArraySND→ Salt Neutrino Detector

Measurement of Attenuation Length for Radio Wave in Salt

Tests have been performed using <u>synthetic and</u> <u>natural rock salt samples</u>.

	Freq.	Synthetic Rock Salt Samples (diameter/mm)	Attenuation Length/m
'nt.	300MHz	ΟΗΥΟ ΚΟΚΕΝ ΚΟGΥΟ CO.25, 30φ	1000±640
Sy	1GHz	OHYO KOKEN KOGYO CO.5, 6, 7, 8, 9φ	538±171
	Freq.	Natural Rock Salts Samples (diameter/mm)	Attenuation Length/m
S.A	300MHz	Hockley 10.4×10.9, 28, 29¢ (USA)	156±112
Ū.S	1GHz	Hockley6×6:monocrystalline form, 8φ, 9φ, 9φ (USA)	275±234
	300MHz	Zuidwending 28φ(Netherlands)	22±2
Ζ	1GHz	Zuidwending 8φ(Netherlands)	77±11
	300MHz	Asse 25φ, 28φ (Germany)	405±166
	1GHz	Asse 9φ, 10φ(Germany)	60±25
	300MHz	Heilbronn 29 φ (Germany)	41±3
NA	1GHz	Lugansk 9φ, 9φ: monocrystalline form (Ukraine)	517±339

Attenuation Length depends on grain diameter & homogeneity (scattering)

Attenuation Length is Frequency-Dependant

Selecting a suitable site, economical antenna spacing (~ 300 m) could detect GZK neutrinos.

ICE

FORTE → Fast On-orbit Recording of Transient Events
 (satellite)

- RICE Radio Ice Cherenkov Experiment
- ANITA -> Antarctic Impulsive Transient Antenna

(ice) (balloon)

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

20

Experiments Flux Limits

- **RICE** limits for 3500 hours livetime in embedded South Pole array
- GLUE limits ~120 hours livetime, Lunar regolith observations
- FORTE limits on 3 days of satellite observations of Greenland ice sheet
- ANITA-lite limits on 18.4 days of data, net 40% livetime with 60% analysis efficiency for detection

Radio Emission from CR Air Showers

The Geosynchrotron Effect

Radio Emission from CR Air Showers

Simulation

Emission pattern for EAS at 10 MHz

Radio Emission from CR Air Showers

ADVANTAGES

- Cheap detectors, easy to deploy
- High duty cycle (24 hours/day minus thunderstorms)
- Low attenuation (can see also distant and inclined showers)
- Also interesting for neutrinos

Potential problems

- Radio freq. interference (RFI)
- correlation with other parameters unclear
- only practical above $\sim 10^{17}$ eV.

LOPES@KASCADE-Grande

Karlsruhe Shower Core and Array Detector

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

KASCADE

LOPES: Current Status

- 10 antenna prototype at KASCADE
- triggered by large event (KASCADE) trigger
- offline correlation of KASCADE & LOPES (not integrated yet into the KASCADE DAQ)
- KASCADE can provide starting points for LOPES air shower reconstruction
 - core position of the air shower
 - direction of the air shower
 - size of the air shower
- Now: 30 antennas have been installed and will take data soon

Antenna Layout

W->E Direction

89 KASCADE events in first 6 months

 \rightarrow 33 detected by LOPES

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

LOPES Summary & Conclusions

- LOPES works, the geosynchrotron effect is real
- Radio is a faithful tracer of air showers
- Radio gives very good energy information and arrival directions.
- Inclined showers: Excellent prospects for composition studies and neutrino hunting
- Next steps:

- detailed comparison of simulated events with events measured by LOPES

- Argentina (AUGER) [better radio BG], Moon

→ LOFAR Low Frequency Array

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

Particles Interaction in Water the Acoustic Signal

Thermo-Acoustic (Hydrodynamic) Mechanism of Energy Dissipation

Solution (Kirchoff Integral)				
$\vec{p(r,t)} =$	$\frac{\beta}{4 \cdot \pi \cdot C_p}$	$\int \frac{dV'}{\left \vec{r}-\vec{r}\right }$	$\cdot \frac{\partial^2}{\partial t^2} q \left(\vec{r}, t \right)$	$-\frac{\overrightarrow{r-r}}{c_s}$

 β depends on temperature (data in water)

Acoustic Signal from Neutrinos

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

other marine sources of sound: wind, waves, ships, animals

Underwater Noise

Signal and Noise Spectrum in the Sea Signal – to – Noise Ratio

- noise depends on wind speed
- at high frequencies dominated by thermal noise
- Expected signal maximum between 10 and 50kHz, where noise is minimal (at sea state zero)

⇒ look for signal in frequency band ~10 to ~50kHz

Acoustic Sensors Development

The Piezoelectric Effect

Piezoelectric effect consists on voltage produced between surfaces of a solid dielectric (non - conducting substance) when a mechanical stress is applied to it

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

Acoustic Sensors Development

Hydrophones

Commercial hydrophones Self-made hydrophones

Requirements

Hydrophones to be used in an underwater neutrino telescope must be:

- pressure resistant (very deep ocean sites)
- Very sensitive (expected pressure signals from neutrino events ~10mPa peak-to-peak for 10¹⁸ eV in 400m distance)
- *low cost* (large number of sensors)

Acoustic Sensors Development

Glaciophones

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

Acoustic Sensors Calibration

Calibration Sources

Proton beam: the Bragg Peak

Electric bulbs

100 neutrons Relative Dose 80 ¹⁹²lr 60 8 MV γ-rays 20 MeV X-rays 40 electrons 20 200 MeV protons 10 15 20 25 0 30 5 Depth in Water [cm] If the proton energy is in the range 100-200 MeV, the most of the primary proton energy is deposited at the Bragg Peak.

<image>

Sensitivity Response Energy Calibration

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

Test at ITEP (Moscow) Proton Beam

Dimensions 50.8 cm × 52.3 cm × 94.5 cm

The 90% of the basin's volume is filled with fresh water. NO control on temperature.

> Piezo-Electric Hydrophones

Calibration with Proton and Laser Beams

Signal is Acoustic

Proton & laser beam experiments confirm thermo – acoustic sound generation is primary effect

- Simulation and model predictions in good agreement with measured signals
- Some minor effect (around 4 °C) need to be clarified

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

[K. Graf]

Lake Baikal

39

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

NEMO

Neutrino Mediterrean Observatory

ONDE - Ocean Noise Detection Experiment

ACORNE Acoustic Cosmic Ray Neutrino Experiment

Calibration – Light Deposition Simulator

- Laser
- High Power Leds
- Xenon Flash Guns

Rona Hydrophone Array

- An array of high sensitivity hydrophones with a frequency response appropriate to acoustic detection studies
- Existing large-scale infrastructure including DAQ, data transmission, buildings, anchorage
- Provides an excellent test-bed for the "simulator"

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

SAUND

The Atlantic Undersea Test and Evaluation Center (AUTEC) hydrophones

SAUND – 1

7 km²

\rightarrow SAUND – 2

AUTEC array improvment

increased BW, gain, stability

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

SAUND - Flux Limits

Comparison Water – Ice – Salt

Conversion of Ionization Energy
into Acoustic Energy

	Ocean	Ice	NaCl
T [°C]	15	-51	30
c_s [m s⁻¹]	1530	3920	4560
β[K-1]	25.5×10⁻⁵	12.5×10 ⁻⁵	11.6×10⁻⁵
С _р [J Кg ⁻¹ К ⁻¹]	3900	1720	839
γ	0.153	1.12	2.87
$\gamma = c_s^2 \cdot \frac{\beta}{C_P}$	Grüne figure of	eisen cou merit of the	n stant medium

	λ⊯catt		λWebs	
	10 ⁴ Hz	3×10 ⁴ Hz	10 ⁴ Hz	3×10 ⁴ Hz
lce (d=0.2 cm)	1650 km	20 Km	8-12 Km	8-12 Km
NaCl (d=0.75 cm)	120 Km	1.4 Km	3×10 ⁴ Km	3300 Km

Speed of a pressure wave in a crystalline solid depends on angle with respect to symmetry axis.

This leads to **scattering at grain boundaries**.

in situ measurements are needed

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

SPATS a South Pole Acoustic Test Setup

IceCube + Acoustic + Radio EeV Neutrino Array

hybrid extension to *lceCube*

Optical Cherenkov Radio Cherenkov & Acoustical Detection ALL IN ONE

First simulations in progress (effective volumes, event rate)

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

Basics of thermo-acoustics mechanism

A pressure wave is generated instantaneous following a sudden deposition of energy in the medium (neglecting absorption: O(10 km) at 10 kHz)

Istantaneous deposition of heat through ionization

 $t_{deposition} \approx D / c \approx 10^{-7} : 10^{-8} sec$

Thermo-acoustic process:

increase of temperature (specific heat capacity Cp), expansion (expansion coeff ß)

$$t_{expansion} \approx 10^{-5} \text{ sec } >> t_{deposition}$$
$$\nabla^2 \mathbf{p} - \frac{1}{\mathbf{c_s}^2} \ddot{\mathbf{p}} = -\frac{\beta}{\mathbf{c_p}} \cdot \frac{\partial \varepsilon(\mathbf{r, t})}{\partial \mathbf{t}}$$

For a point like source (micropulse): $p(r,t) \propto \frac{E_0\beta}{4\pi c_p} \frac{\partial}{\partial t} \frac{\delta\left(t - \frac{r}{c_s}\right)}{r}$ Bipolar pulse spherical expansion
Evaluation
Evalua

For a shower heating a volume of matter (macropulse):

$$\mathbf{p(r,t)} \propto \frac{\beta}{4\pi c_p} \frac{\partial}{\partial t} \int \frac{1}{r} \varepsilon \, dV$$

Sum of pointlike sources: wavefront and signal shape depend on the energy density distribution

The Size of Neutrino Acoustic Detectors

E_v = 10²⁰ eV

in water: p = 0.6 Pa	@ 1 km → 20 mPa (neglecting atter	nuation)
----------------------	-----------------------------------	----------

in Ice : p = 6 Pa @ 1 km \rightarrow 200 mPa (neglecting attenuation)

Underwater Cherenkov detectors Upgoing events – 100 TeV

$$\mathbf{P}_{v\mu}\left(\mathbf{E}_{v}, \mathbf{E}_{\mu}^{\min}\right) = \mathbf{R}_{\mu}^{\text{eff}} \sigma_{cc} \mathbf{N}_{A} = 10^{-4}$$
$$\frac{\mathbf{N}}{\mathbf{A}_{\text{eff}} \cdot \mathbf{T}} = \mathbf{P}_{v\mu} 2\pi \mathbf{e}^{-\mathbf{D}(\mathbf{N}_{A}\sigma_{\text{tot}}\rho_{\text{tarth}})} \approx 100 \frac{\text{events}}{\text{km}^{2}\text{y}}$$

Underwater Acoustic detectors Downgoing events – 10²⁰ eV

$$\begin{split} \mathbf{P}_{\text{det}}(\mathbf{E}_{v}, \mathbf{p}_{\text{min}}) &= \mathbf{H}_{\text{det}}^{\text{eff}} \mathbf{\sigma}_{\text{Tot}} \mathbf{N}_{\mathbf{A}} \approx 10^{-3} \\ \frac{\mathbf{N}}{\mathbf{A}_{\text{eff}} \cdot \mathbf{T}} \approx 10^{-3} \quad \frac{\text{events}}{\text{km}^{2} \text{y}} \end{split}$$

Sound absorption length in ocean O(10 km), noise O(10 mPa)

Several groups developing and improving simulation codes for large acoustic detectors What we can do with 1 km³ filled with hydrophones ?

Fisica Nucleare e Subnucleare II - Prof. Antonio Capone - A.A. 2007/08

Hybrid detector in Ice

