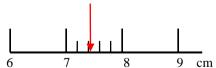

Scheda Densità - 2012

Esperienza: Misura della densità di alcuni cilindretti tramite misure di massa e di volume (lunghezze). (relazione utilizzata: d=M/V)

Lo scopo della misura è di rispondere alla domanda:


La densità media dei cilindretti corrisponde a quella dell'Alluminio puro o vi sono inclusioni di Magnesio che possono far risalire a leghe di altro tipo (Anticorodal XXXX) ?

- Oggetti a disposizione:
 - o 3 cilindri [C₁; C₂; C₃] (3 parallepipedi)

Lettura di una grandezza a x con la sua incertezza Δx :

Scala analogica: Minima divisione D=(Intervallo maggiore)/(numero intervalli minori)= 1cm/5=0,2cm=2mm Scala digitale: minima divisione D=1 LSD (Least Significant Digit= il digit meno significativo, quello più a destra)= 0,01 g

Scala analogica: divisione D = 2 mm Lettura: $x \pm \Delta x = 7.4 \pm 0.1$ mm

Scala digitale LSD = 0,01 g Lettura: $x \pm \Delta x = 27,610 \pm 0,005$ g

La misura con l'incertezza di lettura o di sensibilità è: $M = x \pm \Delta x$, l'incertezza Δx è: $\Delta x = \frac{D}{2}$ dove D è la più piccola divisione dello strumento analogico, oppure il valore del digit meno significativo (LSD= least significant digit) nel caso di uno strumento digitale.

Protocollo dell'esperienza

- Procedura:
 - o Misura delle dimensioni dei cilindri (D_i, H_i) ; i = 1,3
 - Misura delle masse dei cilindri (m_{ci})
- Calcolo dei volumi $V_{ci} \pm \Delta_i$ e quindi delle densità di ogni singolo oggetto:
 - O Densità dei 3 cilindri: $d_{ci} \pm \Delta_{ci}$ Calcolo $\Delta_{ci} = c_i \cdot (\Delta_m/m + \Delta_V/V)$
- Calcolo della densità media dei cilindri (ipotesi di Δ_i circa uguali), si fa la media aritmetica:

$$\circ \qquad \bar{d} = (\frac{1}{3} \sum_{1}^{3} d) \pm \frac{\Delta_{c}}{\sqrt{3}}$$

• Lo scopo della misura è di rispondere alla domanda: la densità media dei cilindri è uguale a quelle dell'alluminio o a quella di altre leghe tipo Anticorodal 6061 o 6063? Un criterio, fra i tanti utilizzabili, è di considerare "uguali" due densità se:

$$\left| \overline{d_c} - \overline{d_t} \right| \le \overline{\Delta} - \overline{\Delta_t}$$

Dettagli delle misure

(ricordarsi che ogni misura va sempre scritta con la sua incertezza)

Sono a disposizione due strumenti diversi per misurare le dimensioni degli oggetti: un calibro che misura lunghezze fino a 150 mm, con una sensibilità di 1/20 mm, ed un palmer che misura lunghezze fino a 25 mm, con sensibilità di 1/100 mm. Se possibile usare lo strumento che permette la precisione (sensibilità) maggiore. Analogamente per le misure di massa: avete a disposizione due bilance, una delle due con due fondo scala differenti, usare per ogni misura la bilancia opportuna con la scala corretta (la più sensibile, data la massa del corpo).

Misura delle dimensioni dei cilindri:

- Si misurano diametro e lunghezza
 - Diametro:
- Fare attenzione a come si esegue la misura, le pareti del palmer devono essere perpendicolari alla superficie esterna.
- Verificare che il cilindro abbia una sezione circolare misurando due diametri perpendicolari fra loro, nel caso fossero differenti usare per l'area una formula opportuna approssimata.
- Misurare almeno tre diametri lungo tutto il cilindro per avere un'idea della forma reale del cilindro: comportarsi di conseguenza.
 - Lunghezza:
- Fare un paio di misure giusto per controllare che le due basi siano parallele fra loro.
 - · Calcolo del volume:
 - Calcolare l'area di base utilizzando la misura del diametro ed un sufficiente numero di cifre per π . Non necessariamente "tutte" le cifre della calcolatrice.
 - Calcolare il volume tramite il valore medio dell'area di base ed il valore medio della lunghezza se la forma è regolare.
 - Calcolo della densità: per ogni cilindretto calcolare $d_i = \frac{m}{V}$